

Open edX XBlock API Guide

This document provides reference information on the XBlock API. You use this
API to build XBlocks.

This document also contains the Open edX XBlock Tutorial, which describes XBlock concepts
in depth and guides developers through the process of creating an XBlock.

	Change history for XBlock

	Introduction to XBlocks

	XBlock API

	Fields API

	Runtime API

	Plugins API

	Exceptions API

	Open edX XBlock Tutorial
	Introduction

	XBlock Overview
	Introduction to XBlocks

	XBlock Examples

	Build an XBlock: Quick Start
	Install XBlock Prerequisites

	Set Up the XBlock Software Development Kit

	Create Your First XBlock

	What Browsers Do I Need to Support?

	Anatomy of an XBlock
	The XBlock Python File

	The XBlock HTML File

	The XBlock JavaScript File

	The XBlock Stylesheets

	Customize Your XBlock
	Customize myxblock.py

	Customize myxblock.html

	Customize myxblock.js

	Customize myxblock.css

	XBlock Concepts
	XBlock Fields

	XBlock Methods

	XBlock Fragments

	XBlock Children

	XBlock Runtimes

	XBlocks, Events, and Grading

	XBlocks and the edX Platform
	Open edX Studio as an XBlock Runtime

	Open edX Learning Management System as an XBlock Runtime

	Deploy Your XBlock in Devstack

	Submit Your XBlock to edX

	Open edX Glossary

	Using XBlock Software Development Kit
	Getting Started with the XBlock SDK

	Xblock.utils
	Settings and theme support

Change history for XBlock

Unreleased

4.0.1 - 2024-04-24

	unpin lxml constraint.

4.0.0 - 2024-04-18

	xblock.fragment has returned as a pass-though component to web_fragments.fragment

3.0.0 - 2024-03-18

Various extraneous classes have been removed from the XBlock API, simplifying its implementation
and making debugging of XBlock instances easier. We believe that most, if not all, XBlock API users
will be unaffected by this change. Some improvements have also been made to the reference documentation.

Specific changes:

	Removed:

	xblock.XBlockMixin (still available as xblock.core.XBlockMixin)

	xblock.core.SharedBlockBase (replaced with xblock.core.Blocklike)

	xblock.internal.Nameable

	xblock.internal.NamedAttributesMetaclass

	xblock.django.request.HeadersDict

	xblock.fields.XBlockMixin (still available as xblock.core.XBlockMixin)

	xblock.mixins.RuntimeServicesMixin

	xblock.mixins.ScopedStorageMixin

	xblock.mixins.IndexInfoMixin

	xblock.mixins.XmlSerializationMixin

	xblock.mixins.HandlersMixin

	xblock.mixins.ChildrenModelMetaclass

	xblock.mixins.HierarchyMixin

	xblock.mixins.ViewsMixin

	Added:

	xblock.core.Blocklike, the new common ancestor of XBlock and XBlockAside, and XBlockMixin,
replacing xblock.core.SharedBlockBase.

	New attributes on xblock.core.XBlockAside, each behaving the same as their XBlock counterpart:

	usage_key

	context_key

	index_dictionary

	Various new attributes on xblock.core.XBlockMixin, encompassing the functionality of these former classes:

	xblock.mixins.IndexInfoMixin

	xblock.mixins.XmlSerializationMixin

	xblock.mixins.HandlersMixin

	Docs

	Various docstrings have been improved, some of which are published in the docs.

	XBlockAside will now be represented in the API docs, right below XBlock on the “XBlock API” page.

	XBlockMixin has been removed from the docs.
It was only ever documented under the “Fields API” page (which didn’t make any sense),
and it was barely even documented there. We considered adding it back to the “XBlock API” page,
but as noted in the class’s new docstring, we do not want to encourage any new use of XBlockMixin.

2.0.0 - 2024-02-26

	Removed deprecations

	xblock.fragment (removed completely)

	xblock.runtime.Runtime._aside_from_xml (just the id_generator argument)

	xblock.runtime.Runtime._usage_id_from_node (just the id_generator argument)

	xblock.runtime.Runtime.add_node_as_child (just the id_generator argument)

	xblock.runtime.Runtime.parse_xml_string (just the id_generator argument)

	xblock.runtime.Runtime.parse_xml_file (just the id_generator argument)

1.10.0 - 2024-01-12

	Add two new properties to XBlock objects: .usage_key and .context_key.
These simply expose the values of .scope_ids.usage_id and .scope_ids.usage_id.context_key,
providing a convenient replacement to the deprecated, edx-platform-specific block properties .location
and .course_id, respectively.

1.9.1 - 2023-12-22

	Fix: add get_javascript_i18n_catalog_url missing xblock parameter to match the Open edX LMS
XBlockI18nService.

1.9.0 - 2023-11-20

	Support for OEP-58 JavaScript translations [https://docs.openedx.org/en/latest/developers/concepts/oep58.html]:

	Introduced abstract JavaScript translations support by adding the i18n_js_namespace property and
get_i18n_js_namespace method to the SharedBlockBase. This allows XBlocks to define a JavaScript namespace
so the XBlock i18n runtime service can manage and load JavaScript translations for XBlocks.

	Added the stub get_javascript_i18n_catalog_url method to the NullI18nService class to be implemented
by runtime services.

	See the edx-platform atlas translations proposal [https://github.com/openedx/edx-platform/blob/master/docs/decisions/0019-oep-58-atlas-translations-design.rst]

1.8.1 - 2023-10-07

	Python Requirements Update

	Update setup.py, adds required packages

1.8.0 - 2023-09-25

	Added xblock-utils [https://github.com/openedx/xblock-utils] repository code into this repository along with docs.

	Docs moved into the docs/ directory.

	See https://github.com/openedx/xblock-utils/issues/197 for more details.

1.7.0 - 2023-08-03

	Switch from edx-sphinx-theme to sphinx-book-theme since the former is
deprecated. See https://github.com/openedx/edx-sphinx-theme/issues/184 for
more details.

	Added support for Django 4.2

1.6.1 - 2022-01-28

	Fix Release Issue with PyPi release workflow

1.6.0 - 2022-01-25

	Dropped Django22, 30 and 31 support

	Added Django40 Support in CI

1.5.1 - 2021-08-26

	Deprecated the Runtime.user_id property in favor of the user service.

1.5.0 - 2021-07-27

	Added Django 3.0, 3.1 & 3.2 support

1.4.2 - 2021-05-24

	Upgraded all Python dependencies.

1.4.1 - 2021-03-20

	Added XBlockParseException exception.

1.3.1 - 2020-05-06

	Fixed import error of mock.

1.3.0 - 2020-05-04

	Drop support to python 2.7 and add support to python 3.8.
typing package failing on py3.8 so add constraint.

1.2.8 - 2019-10-24

	Ensure the version file is closed after reading its content.

1.2.7 - 2019-10-15

	Changed how illegal XML characters are sanitized, to speed the operation.
The old way was removing more characters than are required by the XML
specification.

1.2.6 - 2019-09-24

	Add support for relative dates to DateTime fields.

1.2.5 - 2019-09-19

	Changes for Python 2/3 compatibility.

1.2.4 - 2019-08-27

	Added an API for notifying the Runtime when an XBlock’s save() method is
called.

	Added a mechanism for Runtime subclasses to more easily add extra CSS classes
to the <div> that wraps rendered XBlocks

1.2.3 - 2019-07-24

Allow Mixologist class to consume both class objects and string paths to classes as a part of initialization.

1.2.1 - 2018-09-05

Add a method to get completion mode for a block.

1.2.1 - 2018-06-25

Suppress a spurious warning when using lazily-translated text as the default
value of a String field.

1.2.0 - Aside filtering

	Add capability for XBlockAsides to apply only to XBlocks that match certain conditions

1.0 - Python 3

	Introduce Python 3 compatibility to the xblock code base.
This does not enable Python 2 codebases (like edx-platform) to load xblocks
written in Python 3, but it lays the groundwork for future migrations.

0.5 - ???

No notes provided.

0.4

	Separate Fragment class out into new web-fragments package

	Make Scope enums (UserScope.* and BlockScope.*) into Sentinels, rather than just ints,
so that they can have more meaningful string representations.

	Rename export_xml to add_xml_to_node, to more accurately capture the semantics.

	Allowed Runtime implementations to customize loading from block_types to
XBlock classes.

0.3 - 2014-01-09

	Added services available through Runtime.service, once XBlocks have
announced their desires with @XBlock.needs and @XBlock.wants.

	The “i18n” service provides a gettext.Translations object for retrieving
localized strings.

	Make context an optional parameter for all views.

	Add shortcut method to make rendering an XBlock’s view with its own
runtime easier.

	Change the user field of scopes to be three valued, rather than two. False
becomes UserScope.NONE, True becomes UserScope.ONE, and UserScope.ALL
is new, and represents data that is computed based on input from many users.

	Rename ModelData to FieldData.

	Rename ModelType to Field.

	Split xblock.core into a number of smaller modules:

	xblock.core: Defines XBlock.

	xblock.fields: Defines ModelType and subclasses, ModelData, and metaclasses
for classes with fields.

	xblock.namespaces: Code for XBlock Namespaces only.

	xblock.exceptions: exceptions used by all parts of the XBlock project.

	Changed the interface for Runtime and ModelData so that they function
as single objects that manage large numbers of XBlocks. Any method that
operates on a block now takes that block as the first argument. Blocks, in
turn, are responsible for storing the key values used by their field scopes.

	Changed the interface for model_data objects passed to XBlocks from
dict-like to the being cache-like (as was already used by KeyValueStore).
This removes the need to support methods like iteration and length, which
makes it easier to write new ModelDatas. Also added an actual ModelData
base class to serve as the expected interface.

Introduction to XBlocks

This section introduces XBlocks.

	Overview

	XBlock Independence and Interoperability

	XBlocks Compared to Web Applications

Overview

As a developer, you build XBlocks that course teams use to create independent
course components that work seamlessly with other components in an online
course.

For example, you can build XBlocks to represent individual problems or pieces
of text or HTML content. Furthermore, like Legos, XBlocks are composable; you
can build XBlocks to represent larger structures such as lessons, sections, and
entire courses.

A primary advantage to XBlocks is that they are sharable. The code you write
can be deployed in any instance of the Open edX Platform or other XBlock runtime
application, then used by any course team using that system.

In educational applications, XBlocks can be used to represent individual
problems, web-formatted text and videos, interactive simulations and labs, or
collaborative learning experiences. Furthermore, XBlocks are composable,
allowing an XBlock developer to control the display of other XBlocks to compose
lessons, sections, and entire courses.

XBlock Independence and Interoperability

You must design your XBlock to meet two goals.

	The XBlock must be independent of other XBlocks. Course teams must be able to
use the XBlock without depending on other XBlocks.

	The XBlock must work together with other XBlocks. Course teams must be
able to combine different XBlocks in flexible ways.

XBlocks Compared to Web Applications

XBlocks are like miniature web applications: they maintain state in a storage
layer, render themselves through views, and process user actions through
handlers.

XBlocks differ from web applications in that they render only a small piece of
a complete web page.

Like HTML <div> tags, XBlocks can represent components as small as a
paragraph of text, a video, or a multiple choice input field, or as large as a
section, a chapter, or an entire course.

XBlock API

	
class xblock.core.XBlock(runtime, field_data=None, scope_ids=<object object>, *args, **kwargs)

	Base class for XBlocks. Derive from this class to create new type of XBlock.

Subclasses of XBlocks can:

	Name one or more views, i.e. methods which render the block to HTML.

	Access the parents of their instances.

	Access and manage the children of their instances.

	Request services from the runtime, for their instances to use.

	Define scoped fields, which instances will use to store content, settings, and data.

	Define how instances are serialized to and deserialized from OLX (Open Learning XML).

	Mark methods as handlers for AJAX requests.

	Be installed into a platform as an entry-point plugin.

Note: Don’t override the __init__ method when deriving from this class.

	Parameters:

	
	runtime (Runtime) – Use it to access the environment.
It is available in XBlock code as self.runtime.

	field_data (FieldData) – Interface used by the XBlock
fields to access their data from wherever it is persisted.
Deprecated.

	scope_ids (ScopeIds) – Identifiers needed to resolve
scopes.

	
add_children_to_node(node)

	Add children to etree.Element node.

	
add_xml_to_node(node)

	For exporting, set data on etree.Element node.

	
clear_child_cache()

	Reset the cache of children stored on this XBlock.

	
property context_key

	A key identifying the learning context (course, library, etc.) that contains this XBlock-like usage.

Equivalent to .scope_ids.usage_id.context_key.

Returns:
* LearningContextKey, if .scope_ids.usage_id is a UsageKey instance.
* None, otherwise.

After https://github.com/openedx/XBlock/issues/708 is complete, we can assume that
.scope_ids.usage_id is always a UsageKey, and that this method will
always return a LearningContextKey.

	
force_save_fields(field_names)

	Save all fields that are specified in field_names, even if they are not dirty.

	
get_child(usage_id)

	Return the child identified by usage_id.

	
get_children(usage_id_filter=None)

	Return instantiated XBlocks for each of this blocks children.

	
classmethod get_i18n_js_namespace()

	Gets the JavaScript translations namespace for this XBlock-like class.

	Returns:

	The JavaScript namespace for this XBlock-like class.
None: If this doesn’t have JavaScript translations configured.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_parent()

	Return the parent block of this block, or None if there isn’t one.

	
classmethod get_public_dir()

	Gets the public directory for this XBlock-like class.

	
classmethod get_resources_dir()

	Gets the resource directory for this XBlock-like class.

	
handle(handler_name, request, suffix='')

	Handle request with this block’s runtime.

	
classmethod handler(func)

	A decorator to indicate a function is usable as a handler.

The wrapped function must return a webob.Response object.

	
property has_cached_parent

	Return whether this block has a cached parent block.

	
has_support(view, functionality)

	Returns whether the given view has support for the given functionality.

An XBlock view declares support for a functionality with the
@XBlock.supports decorator. The decorator stores information on the view.

Note: We implement this as an instance method to allow xBlocks to
override it, if necessary.

	Parameters:

	
	view (object [https://docs.python.org/3/library/functions.html#object]) – The view of the xBlock.

	functionality (str [https://docs.python.org/3/library/stdtypes.html#str]) – A functionality of the view.
For example: “multi_device”.

	Returns:

	True or False

	
index_dictionary()

	Return a dict containing information that could be used to feed a search index.

Values may be numeric, string, or dict.

	
classmethod json_handler(func)

	Wrap a handler to consume and produce JSON.

Rather than a Request object, the method will now be passed the
JSON-decoded body of the request. The request should be a POST request
in order to use this method. Any data returned by the function
will be JSON-encoded and returned as the response.

The wrapped function can raise JsonHandlerError to return an error
response with a non-200 status code.

This decorator will return a 405 HTTP status code if the method is not
POST.
This decorator will return a 400 status code if the body contains
invalid JSON.

	
classmethod load_class(identifier, default=None, select=None)

	Load a single class specified by identifier.

If identifier specifies more than a single class, and select is not None,
then call select on the list of entry_points. Otherwise, choose
the first one and log a warning.

If default is provided, return it if no entry_point matching
identifier is found. Otherwise, will raise a PluginMissingError

If select is provided, it should be a callable of the form:

def select(identifier, all_entry_points):
 # ...
 return an_entry_point

The all_entry_points argument will be a list of all entry_points matching identifier
that were found, and select should return one of those entry_points to be
loaded. select should raise PluginMissingError if no plugin is found, or AmbiguousPluginError
if too many plugins are found

	
classmethod load_classes(fail_silently=True)

	Load all the classes for a plugin.

Produces a sequence containing the identifiers and their corresponding
classes for all of the available instances of this plugin.

fail_silently causes the code to simply log warnings if a
plugin cannot import. The goal is to be able to use part of
libraries from an XBlock (and thus have it installed), even if
the overall XBlock cannot be used (e.g. depends on Django in a
non-Django application). There is disagreement about whether
this is a good idea, or whether we should see failures early
(e.g. on startup or first page load), and in what
contexts. Hence, the flag.

	
classmethod load_tagged_classes(tag, fail_silently=True)

	Produce a sequence of all XBlock classes tagged with tag.

fail_silently causes the code to simply log warnings if a
plugin cannot import. The goal is to be able to use part of
libraries from an XBlock (and thus have it installed), even if
the overall XBlock cannot be used (e.g. depends on Django in a
non-Django application). There is diagreement about whether
this is a good idea, or whether we should see failures early
(e.g. on startup or first page load), and in what
contexts. Hence, the flag.

	
classmethod needs(*service_names)

	A class decorator to indicate that an XBlock-like class needs particular services.

	
classmethod open_local_resource(uri)

	Open a local resource.

The container calls this method when it receives a request for a
resource on a URL which was generated by Runtime.local_resource_url().
It will pass the URI from the original call to local_resource_url()
back to this method. The XBlock-like must parse this URI and return an open
file-like object for the resource.

For security reasons, the default implementation will return only a
very restricted set of file types, which must be located in a folder
that defaults to “public”. The location used for public resources can
be changed on a per-XBlock-like basis. XBlock-like authors who want to override
this behavior will need to take care to ensure that the method only
serves legitimate public resources. At the least, the URI should be
matched against a whitelist regex to ensure that you do not serve an
unauthorized resource.

	
classmethod parse_xml(node, runtime, keys)

	Use node to construct a new block.

	Parameters:

	
	node (Element [https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element]) – The xml node to parse into an xblock.

	runtime (Runtime) – The runtime to use while parsing.

	keys (ScopeIds) – The keys identifying where this block
will store its data.

	
classmethod register_temp_plugin(class_, identifier=None, dist='xblock')

	Decorate a function to run with a temporary plugin available.

Use it like this in tests:

@register_temp_plugin(MyXBlockClass):
def test_the_thing():
 # Here I can load MyXBlockClass by name.

	
render(view, context=None)

	Render view with this block’s runtime and the supplied context

	
save()

	Save all dirty fields attached to this XBlock.

	
classmethod service_declaration(service_name)

	Find and return a service declaration.

XBlock-like classes declare their service requirements with @XBlock{Aside}.needs and
@XBlock{Aside}.wants decorators. These store information on the class.
This function finds those declarations for a block.

	Parameters:

	service_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the service requested.

	Returns:

	One of “need”, “want”, or None.

	
classmethod supports(*functionalities)

	A view decorator to indicate that an xBlock view has support for the
given functionalities.

	Parameters:

	functionalities – String identifiers for the functionalities of the view.
For example: “multi_device”.

	
static tag(tags)

	Returns a function that adds the words in tags as class tags to this class.

	
ugettext(text)

	Translates message/text and returns it in a unicode string.
Using runtime to get i18n service.

	
property usage_key

	A key identifying this particular usage of the XBlock-like, unique across all learning contexts in the system.

Equivalent to to .scope_ids.usage_id.

	
validate()

	Ask this xblock to validate itself. Subclasses are expected to override this
method, as there is currently only a no-op implementation. Any overriding method
should call super to collect validation results from its superclasses, and then
add any additional results as necessary.

	
classmethod wants(*service_names)

	A class decorator to indicate that a XBlock-like class wants particular services.

	
xml_element_name()

	What XML element name should be used for this block?

	
xml_text_content()

	What is the text content for this block’s XML node?

	
class xblock.core.XBlockAside(scope_ids, field_data=None, *, runtime, **kwargs)

	Base class for XBlock-like objects that are rendered alongside XBlock views.

Subclasses of XBlockAside can:

	Specify which XBlock views they are to be injected into.

	Request services from the runtime, for their instances to use.

	Define scoped fields, which instances will use to store content, settings, and data.

	Define how instances are serialized to and deserialized from OLX (Open Learning XML).

	Mark methods as handlers for AJAX requests.

	Be installed into a platform as an entry-point plugin.

	Parameters:

	
	scope_ids (ScopeIds) – Identifiers needed to resolve
scopes.

	field_data (FieldData) – Interface used by XBlock-likes’
fields to access their data from wherever it is persisted.
DEPRECATED–supply a field-data Runtime service instead.

	runtime (Runtime) – Use it to access the environment.
It is available in XBlock code as self.runtime.

	
add_xml_to_node(node)

	For exporting, set data on node from ourselves.

	
classmethod aside_for(view_name)

	A decorator to indicate a function is the aside view for the given view_name.

Aside views should have a signature like:

@XBlockAside.aside_for('student_view')
def student_aside(self, block, context=None):
 ...
 return Fragment(...)

	
aside_view_declaration(view_name)

	Find and return a function object if one is an aside_view for the given view_name

Aside methods declare their view provision via @XBlockAside.aside_for(view_name)
This function finds those declarations for a block.

	Parameters:

	view_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the view requested.

	Returns:

	either the function or None

	
property context_key

	A key identifying the learning context (course, library, etc.) that contains this XBlock-like usage.

Equivalent to .scope_ids.usage_id.context_key.

Returns:
* LearningContextKey, if .scope_ids.usage_id is a UsageKey instance.
* None, otherwise.

After https://github.com/openedx/XBlock/issues/708 is complete, we can assume that
.scope_ids.usage_id is always a UsageKey, and that this method will
always return a LearningContextKey.

	
force_save_fields(field_names)

	Save all fields that are specified in field_names, even if they are not dirty.

	
classmethod get_i18n_js_namespace()

	Gets the JavaScript translations namespace for this XBlock-like class.

	Returns:

	The JavaScript namespace for this XBlock-like class.
None: If this doesn’t have JavaScript translations configured.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
classmethod get_public_dir()

	Gets the public directory for this XBlock-like class.

	
classmethod get_resources_dir()

	Gets the resource directory for this XBlock-like class.

	
handle(handler_name, request, suffix='')

	Handle request with this block’s runtime.

	
classmethod handler(func)

	A decorator to indicate a function is usable as a handler.

The wrapped function must return a webob.Response object.

	
index_dictionary()

	Return a dict containing information that could be used to feed a search index.

Values may be numeric, string, or dict.

	
classmethod json_handler(func)

	Wrap a handler to consume and produce JSON.

Rather than a Request object, the method will now be passed the
JSON-decoded body of the request. The request should be a POST request
in order to use this method. Any data returned by the function
will be JSON-encoded and returned as the response.

The wrapped function can raise JsonHandlerError to return an error
response with a non-200 status code.

This decorator will return a 405 HTTP status code if the method is not
POST.
This decorator will return a 400 status code if the body contains
invalid JSON.

	
classmethod load_class(identifier, default=None, select=None)

	Load a single class specified by identifier.

If identifier specifies more than a single class, and select is not None,
then call select on the list of entry_points. Otherwise, choose
the first one and log a warning.

If default is provided, return it if no entry_point matching
identifier is found. Otherwise, will raise a PluginMissingError

If select is provided, it should be a callable of the form:

def select(identifier, all_entry_points):
 # ...
 return an_entry_point

The all_entry_points argument will be a list of all entry_points matching identifier
that were found, and select should return one of those entry_points to be
loaded. select should raise PluginMissingError if no plugin is found, or AmbiguousPluginError
if too many plugins are found

	
classmethod load_classes(fail_silently=True)

	Load all the classes for a plugin.

Produces a sequence containing the identifiers and their corresponding
classes for all of the available instances of this plugin.

fail_silently causes the code to simply log warnings if a
plugin cannot import. The goal is to be able to use part of
libraries from an XBlock (and thus have it installed), even if
the overall XBlock cannot be used (e.g. depends on Django in a
non-Django application). There is disagreement about whether
this is a good idea, or whether we should see failures early
(e.g. on startup or first page load), and in what
contexts. Hence, the flag.

	
classmethod needs(*service_names)

	A class decorator to indicate that an XBlock-like class needs particular services.

	
needs_serialization()

	Return True if the aside has any data to serialize to XML.

If all of the aside’s data is empty or a default value, then the aside shouldn’t
be serialized as XML at all.

	
classmethod open_local_resource(uri)

	Open a local resource.

The container calls this method when it receives a request for a
resource on a URL which was generated by Runtime.local_resource_url().
It will pass the URI from the original call to local_resource_url()
back to this method. The XBlock-like must parse this URI and return an open
file-like object for the resource.

For security reasons, the default implementation will return only a
very restricted set of file types, which must be located in a folder
that defaults to “public”. The location used for public resources can
be changed on a per-XBlock-like basis. XBlock-like authors who want to override
this behavior will need to take care to ensure that the method only
serves legitimate public resources. At the least, the URI should be
matched against a whitelist regex to ensure that you do not serve an
unauthorized resource.

	
classmethod parse_xml(node, runtime, keys)

	Use node to construct a new block.

	Parameters:

	
	node (Element [https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element]) – The xml node to parse into an xblock.

	runtime (Runtime) – The runtime to use while parsing.

	keys (ScopeIds) – The keys identifying where this block
will store its data.

	
classmethod register_temp_plugin(class_, identifier=None, dist='xblock')

	Decorate a function to run with a temporary plugin available.

Use it like this in tests:

@register_temp_plugin(MyXBlockClass):
def test_the_thing():
 # Here I can load MyXBlockClass by name.

	
save()

	Save all dirty fields attached to this XBlock.

	
classmethod service_declaration(service_name)

	Find and return a service declaration.

XBlock-like classes declare their service requirements with @XBlock{Aside}.needs and
@XBlock{Aside}.wants decorators. These store information on the class.
This function finds those declarations for a block.

	Parameters:

	service_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the service requested.

	Returns:

	One of “need”, “want”, or None.

	
classmethod should_apply_to_block(block)

	Return True if the aside should be applied to a given block. This can be overridden
if some aside should only wrap blocks with certain properties.

	
property usage_key

	A key identifying this particular usage of the XBlock-like, unique across all learning contexts in the system.

Equivalent to to .scope_ids.usage_id.

	
classmethod wants(*service_names)

	A class decorator to indicate that a XBlock-like class wants particular services.

	
xml_element_name()

	What XML element name should be used for this block?

	
xml_text_content()

	What is the text content for this block’s XML node?

Fields API

Fields declare storage for XBlock data. They use abstract notions of
scopes to associate each field with particular sets of blocks and users.
The hosting runtime application decides what actual storage mechanism to use
for each scope.

	
class xblock.fields.BlockScope

	Enumeration of block scopes.

The block scope specifies how a field relates to blocks. A
BlockScope and a UserScope are combined to make a
Scope for a field.

USAGE: The data is related to a particular use of a block in a course.

	DEFINITION: The data is related to the definition of the block. Although
	unusual, one block definition can be used in more than one place in a
course.

TYPE: The data is related to all instances of this type of XBlock.

	ALL: The data is common to all blocks. This can be useful for storing
	information that is purely about the student.

	
classmethod scopes()

	Return a list of valid/understood class scopes.

	
class xblock.fields.Boolean(help=None, default=fields.UNSET, scope=ScopeBase(user=UserScope.NONE, block=BlockScope.DEFINITION, name='content'), display_name=None, **kwargs)

	A field class for representing a boolean.

The value, as loaded or enforced, can be either a Python bool, a string, or
any value that will then be converted to a bool in the from_json method.

Examples:

True -> True
'true' -> True
'TRUE' -> True
'any other string' -> False
[] -> False
['123'] -> True
None - > False

	
enforce_type(value)

	Coerce the type of the value, if necessary

Called on field sets to ensure that the stored type is consistent if the
field was initialized with enforce_type=True

This must not have side effects, since it will be executed to trigger
a DeprecationWarning even if enforce_type is disabled

	
from_json(value)

	Return value as a native full featured python type (the inverse of to_json)

Called during field reads to convert the stored value into a full featured python
object

	
class xblock.fields.Dict(help=None, default=fields.UNSET, scope=ScopeBase(user=UserScope.NONE, block=BlockScope.DEFINITION, name='content'), display_name=None, values=None, enforce_type=False, xml_node=False, force_export=False, **kwargs)

	A field class for representing a Python dict.

The value, as loaded or enforced, must be either be None or a dict.

	
enforce_type(value)

	Coerce the type of the value, if necessary

Called on field sets to ensure that the stored type is consistent if the
field was initialized with enforce_type=True

This must not have side effects, since it will be executed to trigger
a DeprecationWarning even if enforce_type is disabled

	
from_json(value)

	Return value as a native full featured python type (the inverse of to_json)

Called during field reads to convert the stored value into a full featured python
object

	
to_string(value)

	In python3, json.dumps() cannot sort keys of different types,
so preconvert None to ‘null’.

	
class xblock.fields.Field(help=None, default=fields.UNSET, scope=ScopeBase(user=UserScope.NONE, block=BlockScope.DEFINITION, name='content'), display_name=None, values=None, enforce_type=False, xml_node=False, force_export=False, **kwargs)

	A field class that can be used as a class attribute to define what data the
class will want to refer to.

When the class is instantiated, it will be available as an instance
attribute of the same name, by proxying through to the field-data service on
the containing object.

	Parameters:

	
	help (str [https://docs.python.org/3/library/stdtypes.html#str]) – documentation for the field, suitable for presenting to a
user (defaults to None).

	default – field’s default value. Can be a static value or the special
xblock.fields.UNIQUE_ID reference. When set to xblock.fields.UNIQUE_ID,
the field defaults to a unique string that is deterministically calculated
for the field in the given scope (defaults to None).

	scope – this field’s scope (defaults to Scope.content).

	display_name – the display name for the field, suitable for presenting
to a user (defaults to name of the field).

	values – a specification of the valid values for this field. This can be
specified as either a static specification, or a function that
returns the specification. For example specification formats, see
the values property definition.

	enforce_type – whether the type of the field value should be enforced
on set, using self.enforce_type, raising an exception if it’s not
possible to convert it. This provides a guarantee on the stored
value type.

	xml_node – if set, the field will be serialized as a
separate node instead of an xml attribute (default: False).

	force_export – if set, the field value will be exported to XML even if normal
export conditions are not met (i.e. the field has no explicit value set)

	kwargs – optional runtime-specific options/metadata. Will be stored as
runtime_options.

	
property default

	Returns the static value that this defaults to.

	
delete_from(xblock)

	Delete the value for this field from the supplied xblock

	
property display_name

	Returns the display name for this class, suitable for use in a GUI.

If no display name has been set, returns the name of the class.

	
enforce_type(value)

	Coerce the type of the value, if necessary

Called on field sets to ensure that the stored type is consistent if the
field was initialized with enforce_type=True

This must not have side effects, since it will be executed to trigger
a DeprecationWarning even if enforce_type is disabled

	
from_json(value)

	Return value as a native full featured python type (the inverse of to_json)

Called during field reads to convert the stored value into a full featured python
object

	
from_string(serialized)

	Returns a native value from a YAML serialized string representation.
Since YAML is a superset of JSON, this is the inverse of to_string.)

	
is_set_on(xblock)

	Return whether this field has a non-default value on the supplied xblock

	
property name

	Returns the name of this field.

	
static needs_name(field)

	Returns whether the given) is yet to be named.

	
read_from(xblock)

	Retrieve the value for this field from the specified xblock

	
read_json(xblock)

	Retrieve the serialized value for this field from the specified xblock

	
to_json(value)

	Return value in the form of nested lists and dictionaries (suitable
for passing to json.dumps).

This is called during field writes to convert the native python
type to the value stored in the database

	
to_string(value)

	Return a JSON serialized string representation of the value.

	
property values

	Returns the valid values for this class. This is useful
for representing possible values in a UI.

Example formats:

	A finite set of elements:

[1, 2, 3]

	A finite set of elements where the display names differ from the
values:

[
 {"display_name": "Always", "value": "always"},
 {"display_name": "Past Due", "value": "past_due"},
]

	A range for floating point numbers with specific increments:

{"min": 0 , "max": 10, "step": .1}

If this field class does not define a set of valid values, this
property will return None.

	
write_to(xblock, value)

	Set the value for this field to value on the supplied xblock

	
class xblock.fields.Float(help=None, default=fields.UNSET, scope=ScopeBase(user=UserScope.NONE, block=BlockScope.DEFINITION, name='content'), display_name=None, values=None, enforce_type=False, xml_node=False, force_export=False, **kwargs)

	A field that contains a float.

The value, as loaded or enforced, can be None, ‘’ (which will be treated as
None), a Python float, or a value that will parse as an float, ie.,
something for which float(value) does not throw an error.

	
enforce_type(value)

	Coerce the type of the value, if necessary

Called on field sets to ensure that the stored type is consistent if the
field was initialized with enforce_type=True

This must not have side effects, since it will be executed to trigger
a DeprecationWarning even if enforce_type is disabled

	
from_json(value)

	Return value as a native full featured python type (the inverse of to_json)

Called during field reads to convert the stored value into a full featured python
object

	
class xblock.fields.Integer(help=None, default=fields.UNSET, scope=ScopeBase(user=UserScope.NONE, block=BlockScope.DEFINITION, name='content'), display_name=None, values=None, enforce_type=False, xml_node=False, force_export=False, **kwargs)

	A field that contains an integer.

The value, as loaded or enforced, can be None, ‘’ (which will be treated as
None), a Python integer, or a value that will parse as an integer, ie.,
something for which int(value) does not throw an error.

Note that a floating point value will convert to an integer, but a string
containing a floating point number (‘3.48’) will throw an error.

	
enforce_type(value)

	Coerce the type of the value, if necessary

Called on field sets to ensure that the stored type is consistent if the
field was initialized with enforce_type=True

This must not have side effects, since it will be executed to trigger
a DeprecationWarning even if enforce_type is disabled

	
from_json(value)

	Return value as a native full featured python type (the inverse of to_json)

Called during field reads to convert the stored value into a full featured python
object

	
class xblock.fields.List(help=None, default=fields.UNSET, scope=ScopeBase(user=UserScope.NONE, block=BlockScope.DEFINITION, name='content'), display_name=None, values=None, enforce_type=False, xml_node=False, force_export=False, **kwargs)

	A field class for representing a list.

The value, as loaded or enforced, can either be None or a list.

	
enforce_type(value)

	Coerce the type of the value, if necessary

Called on field sets to ensure that the stored type is consistent if the
field was initialized with enforce_type=True

This must not have side effects, since it will be executed to trigger
a DeprecationWarning even if enforce_type is disabled

	
from_json(value)

	Return value as a native full featured python type (the inverse of to_json)

Called during field reads to convert the stored value into a full featured python
object

	
class xblock.fields.Scope(user, block, name=None)

	Defines six types of scopes to be used: content, settings,
user_state, preferences, user_info, and user_state_summary.

The content scope is used to save data for all users, for one particular
block, across all runs of a course. An example might be an XBlock that
wishes to tabulate user “upvotes”, or HTML content ti display literally on
the page (this example being the reason this scope is named content).

The settings scope is used to save data for all users, for one particular
block, for one specific run of a course. This is like the content scope,
but scoped to one run of a course. An example might be a due date for a
problem.

The user_state scope is used to save data for one user, for one block,
for one run of a course. An example might be how many points a user scored
on one specific problem.

The preferences scope is used to save data for one user, for all
instances of one specific TYPE of block, across the entire platform. An
example might be that a user can set their preferred default speed for the
video player. This default would apply to all instances of the video
player, across the whole platform, but only for that student.

The user_info scope is used to save data for one user, across the entire
platform. An example might be a user’s time zone or language preference.

The user_state_summary scope is used to save data aggregated across many
users of a single block. For example, a block might store a histogram of
the points scored by all users attempting a problem.

Create a new Scope, with an optional name.

	
classmethod named_scopes()

	Return all named Scopes.

	
classmethod scopes()

	Return all possible Scopes.

	
class xblock.fields.ScopeIds(user_id, block_type, def_id, usage_id)

	A simple wrapper to collect all of the ids needed to correctly identify an XBlock
(or other classes deriving from ScopedStorageMixin) to a FieldData.
These identifiers match up with BlockScope and UserScope attributes, so that,
for instance, the def_id identifies scopes that use BlockScope.DEFINITION.

Create new instance of ScopeIds(user_id, block_type, def_id, usage_id)

	
class xblock.fields.Set(*args, **kwargs)

	A field class for representing a set.

The stored value can either be None or a set.

Set class constructor.

Redefined in order to convert default values to sets.

	
enforce_type(value)

	Coerce the type of the value, if necessary

Called on field sets to ensure that the stored type is consistent if the
field was initialized with enforce_type=True

This must not have side effects, since it will be executed to trigger
a DeprecationWarning even if enforce_type is disabled

	
from_json(value)

	Return value as a native full featured python type (the inverse of to_json)

Called during field reads to convert the stored value into a full featured python
object

	
class xblock.fields.String(help=None, default=fields.UNSET, scope=ScopeBase(user=UserScope.NONE, block=BlockScope.DEFINITION, name='content'), display_name=None, values=None, enforce_type=False, xml_node=False, force_export=False, **kwargs)

	A field class for representing a string.

The value, as loaded or enforced, can either be None or a basestring instance.

	
enforce_type(value)

	Coerce the type of the value, if necessary

Called on field sets to ensure that the stored type is consistent if the
field was initialized with enforce_type=True

This must not have side effects, since it will be executed to trigger
a DeprecationWarning even if enforce_type is disabled

	
from_json(value)

	Return value as a native full featured python type (the inverse of to_json)

Called during field reads to convert the stored value into a full featured python
object

	
from_string(serialized)

	String gets serialized and deserialized without quote marks.

	
property none_to_xml

	Returns True to use a XML node for the field and represent None as an attribute.

	
to_string(value)

	String gets serialized and deserialized without quote marks.

	
class xblock.fields.UserScope

	Enumeration of user scopes.

The user scope specifies how a field relates to users. A
BlockScope and a UserScope are combined to make a
Scope for a field.

	NONE: Identifies data agnostic to the user of the XBlock. The
	data is related to no particular user. All users see the same data.
For instance, the definition of a problem.

	ONE: Identifies data particular to a single user of the XBlock.
	For instance, a student’s answer to a problem.

	ALL: Identifies data aggregated while the block is used by many users.
	The data is related to all the users. For instance, a count of how
many students have answered a question, or a histogram of the answers
submitted by all students.

	
classmethod scopes()

	Return a list of valid/understood class scopes.
Why do we need this? I believe it is not used anywhere.

	
class xblock.fields.XMLString(help=None, default=fields.UNSET, scope=ScopeBase(user=UserScope.NONE, block=BlockScope.DEFINITION, name='content'), display_name=None, values=None, enforce_type=False, xml_node=False, force_export=False, **kwargs)

	A field class for representing an XML string.

The value, as loaded or enforced, can either be None or a basestring instance.
If it is a basestring instance, it must be valid XML. If it is not valid XML,
an lxml.etree.XMLSyntaxError will be raised.

	
enforce_type(value)

	Coerce the type of the value, if necessary

Called on field sets to ensure that the stored type is consistent if the
field was initialized with enforce_type=True

This must not have side effects, since it will be executed to trigger
a DeprecationWarning even if enforce_type is disabled

	
to_json(value)

	Serialize the data, ensuring that it is valid XML (or None).

Raises an lxml.etree.XMLSyntaxError if it is a basestring but not valid
XML.

	
class xblock.field_data.FieldData

	An interface allowing access to an XBlock’s field values indexed by field names.

	
default(block, name)

	Get the default value for this field which may depend on context or may just be the field’s global
default. The default behavior is to raise KeyError which will cause the caller to return the field’s
global default.

	Parameters:

	
	block (XBlock) – the block containing the field being defaulted

	name (str) – the field’s name

	
abstract delete(block, name)

	Reset the value of the field named name to the default for XBlock block.

	Parameters:

	
	block (XBlock) – block to modify

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – field name to delete

	
abstract get(block, name)

	Retrieve the value for the field named name for the XBlock block.

If no value is set, raise a KeyError.

The value returned may be mutated without modifying the backing store.

	Parameters:

	
	block (XBlock) – block to inspect

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – field name to look up

	
has(block, name)

	Return whether or not the field named name has a non-default value for the XBlock block.

	Parameters:

	
	block (XBlock) – block to check

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – field name

	
abstract set(block, name, value)

	Set the value of the field named name for XBlock block.

value may be mutated after this call without affecting the backing store.

	Parameters:

	
	block (XBlock) – block to modify

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – field name to set

	value – value to set

	
set_many(block, update_dict)

	Update many fields on an XBlock simultaneously.

	Parameters:

	
	block (XBlock) – the block to update

	update_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A map of field names to their new values

Runtime API

Machinery to make the common case easy when building new runtimes

	
xblock.runtime.DbModel

	alias of KvsFieldData

	
class xblock.runtime.DictKeyValueStore(storage=None)

	A KeyValueStore that stores everything into a Python dictionary.

	
delete(key)

	Deletes key from storage.

	
get(key)

	Reads the value of the given key from storage.

	
has(key)

	Returns whether or not key is present in storage.

	
set(key, value)

	Sets key equal to value in storage.

	
set_many(update_dict)

	For each (key, value) in update_dict, set key to value in storage.

The default implementation brute force updates field by field through set which may be inefficient
for any runtimes doing persistence operations on each set. Such implementations will want to
override this method.

	Update_dict:

	field_name, field_value pairs for all cached changes

	
class xblock.runtime.IdGenerator

	An abstract object that creates usage and definition ids

	
abstract create_aside(definition_id, usage_id, aside_type)

	Make a new aside definition and usage ids, indicating an XBlockAside of type aside_type
commenting on an XBlock usage usage_id

	Returns:

	(aside_definition_id, aside_usage_id)

	
abstract create_definition(block_type, slug=None)

	Make a definition, storing its block type.

If slug is provided, it is a suggestion that the definition id
incorporate the slug somehow.

Returns the newly-created definition id.

	
abstract create_usage(def_id)

	Make a usage, storing its definition id.

Returns the newly-created usage id.

	
class xblock.runtime.IdReader

	An abstract object that stores usages and definitions.

	
abstract get_aside_type_from_definition(aside_id)

	Retrieve the XBlockAside aside_type associated with this aside
definition id.

	Parameters:

	aside_id – The definition id of the XBlockAside.

	Returns:

	The aside_type of the aside.

	
abstract get_aside_type_from_usage(aside_id)

	Retrieve the XBlockAside aside_type associated with this aside
usage id.

	Parameters:

	aside_id – The usage id of the XBlockAside.

	Returns:

	The aside_type of the aside.

	
abstract get_block_type(def_id)

	Retrieve the block_type of a particular definition

	Parameters:

	def_id – The id of the definition to query

	Returns:

	The block_type of the definition

	
abstract get_definition_id(usage_id)

	Retrieve the definition that a usage is derived from.

	Parameters:

	usage_id – The id of the usage to query

	Returns:

	The definition_id the usage is derived from

	
abstract get_definition_id_from_aside(aside_id)

	Retrieve the XBlock definition_id associated with this aside definition id.

	Parameters:

	aside_id – The definition id of the XBlockAside.

	Returns:

	The definition_id of the xblock the aside is commenting on.

	
abstract get_usage_id_from_aside(aside_id)

	Retrieve the XBlock usage_id associated with this aside usage id.

	Parameters:

	aside_id – The usage id of the XBlockAside.

	Returns:

	The usage_id of the usage the aside is commenting on.

	
class xblock.runtime.KeyValueStore

	The abstract interface for Key Value Stores.

	
class Key(scope, user_id, block_scope_id, field_name, block_family='xblock.v1')

	Keys are structured to retain information about the scope of the data.
Stores can use this information however they like to store and retrieve
data.

Create new instance of Key(scope, user_id, block_scope_id, field_name, block_family)

	
default(key)

	Returns the context relevant default of the given key
or raise KeyError which will result in the field’s global default.

	
abstract delete(key)

	Deletes key from storage.

	
abstract get(key)

	Reads the value of the given key from storage.

	
abstract has(key)

	Returns whether or not key is present in storage.

	
abstract set(key, value)

	Sets key equal to value in storage.

	
set_many(update_dict)

	For each (key, value) in update_dict, set key to value in storage.

The default implementation brute force updates field by field through set which may be inefficient
for any runtimes doing persistence operations on each set. Such implementations will want to
override this method.

	Update_dict:

	field_name, field_value pairs for all cached changes

	
class xblock.runtime.KvsFieldData(kvs, **kwargs)

	An interface mapping value access that uses field names to one
that uses the correct scoped keys for the underlying KeyValueStore

	
default(block, name)

	Ask the kvs for the default (default implementation which other classes may override).

	Parameters:

	
	block (XBlock) – block containing field to default

	name – name of the field to default

	
delete(block, name)

	Reset the value of the field named name to the default

	
get(block, name)

	Retrieve the value for the field named name.

If a value is provided for default, then it will be
returned if no value is set

	
has(block, name)

	Return whether or not the field named name has a non-default value

	
set(block, name, value)

	Set the value of the field named name

	
set_many(block, update_dict)

	Update the underlying model with the correct values.

	
class xblock.runtime.MemoryIdManager

	A simple dict-based implementation of IdReader and IdGenerator.

	
ASIDE_DEFINITION_ID

	alias of MemoryAsideDefinitionId

	
ASIDE_USAGE_ID

	alias of MemoryAsideUsageId

	
clear()

	Remove all entries.

	
create_aside(definition_id, usage_id, aside_type)

	Create the aside.

	
create_definition(block_type, slug=None)

	Make a definition, storing its block type.

	
create_usage(def_id)

	Make a usage, storing its definition id.

	
get_aside_type_from_definition(aside_id)

	Get an aside’s type from its definition id.

	
get_aside_type_from_usage(aside_id)

	Get an aside’s type from its usage id.

	
get_block_type(def_id)

	Get a block_type by its definition id.

	
get_definition_id(usage_id)

	Get a definition_id by its usage id.

	
get_definition_id_from_aside(aside_id)

	Extract the original xblock’s definition_id from an aside’s definition_id.

	
get_usage_id_from_aside(aside_id)

	Extract the usage_id from the aside’s usage_id.

	
class xblock.runtime.Mixologist(mixins)

	Provides a facility to dynamically generate classes with additional mixins.

	Parameters:

	mixins (iterable of class) – Classes to mixin or names of classes to mixin.

	
mix(cls)

	Returns a subclass of cls mixed with self.mixins.

	Parameters:

	cls (class) – The base class to mix into

	
class xblock.runtime.NullI18nService

	A simple implementation of the runtime “i18n” service.

	
get_javascript_i18n_catalog_url(block)

	Return the URL to the JavaScript i18n catalog file.

	Parameters:

	block (XBlock) – The block that is requesting the URL.

This method returns None in NullI18nService. When implemented in
a runtime, it should return the URL to the JavaScript i18n catalog so
it can be loaded in frontends.

	
strftime(dtime, format)

	Locale-aware strftime, with format short-cuts.

	
property ugettext

	Dispatch to the appropriate gettext method to handle text objects.

Note that under python 3, this uses gettext(), while under python 2,
it uses ugettext(). This should not be used with bytestrings.

	
property ungettext

	Dispatch to the appropriate ngettext method to handle text objects.

Note that under python 3, this uses ngettext(), while under python 2,
it uses ungettext(). This should not be used with bytestrings.

	
class xblock.runtime.ObjectAggregator(*objects)

	Provides a single object interface that combines many smaller objects.

Attribute access on the aggregate object acts on the first sub-object
that has that attribute.

	
class xblock.runtime.RegexLexer(*toks)

	Split text into lexical tokens based on regexes.

	
lex(text)

	Iterator that tokenizes text and yields up tokens as they are found

	
class xblock.runtime.Runtime(id_reader, id_generator, field_data=None, mixins=(), services=None, default_class=None, select=None)

	Access to the runtime environment for XBlocks.

	Parameters:

	
	id_reader (IdReader) – An object that allows the Runtime to
map between usage_ids, definition_ids, and block_types.

	id_generator (IdGenerator) – The IdGenerator to use
for creating ids when importing XML or loading XBlockAsides.

	field_data (FieldData) – The FieldData to use by default when
constructing an XBlock from this Runtime.

	mixins (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Classes that should be mixed in with every XBlock
created by this Runtime.

	services (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Services to make available through the
service() method. There’s no point passing anything here
if you are overriding service() in your sub-class.

	default_class (class) – The default class to use if a class can’t be found for a
particular block_type when loading an XBlock.

	select – A function to select from one or more XBlock-like subtypes found
when calling XBlock.load_class() or XBlockAside.load_class()
to resolve a block_type.

	
add_block_as_child_node(block, node)

	Export block as a child node of node.

	
add_node_as_child(block, node)

	Called by XBlock.parse_xml to treat a child node as a child block.

	
applicable_aside_types(block)

	Return the set of applicable aside types for this runtime and block. This method allows the runtime
to filter the set of asides it wants to support or to provide even block-level or block_type level
filtering. We may extend this in the future to also take the user or user roles.

	
construct_xblock(block_type, scope_ids, field_data=None, *args, **kwargs)

	Construct a new xblock of the type identified by block_type,
passing *args and **kwargs into __init__.

	
construct_xblock_from_class(cls, scope_ids, field_data=None, *args, **kwargs)

	Construct a new xblock of type cls, mixing in the mixins
defined for this application.

	
create_aside(block_type, keys)

	The aside version of construct_xblock: take a type and key. Return an instance

	
export_to_xml(block, xmlfile)

	Export the block to XML, writing the XML to xmlfile.

	
property field_data

	Access the FieldData passed in the constructor.

Deprecated in favor of a ‘field-data’ service.

	
get_aside(aside_usage_id)

	Create an XBlockAside in this runtime.

The aside_usage_id is used to find the Aside class and data.

	
get_aside_of_type(block, aside_type)

	Return the aside of the given aside_type which might be decorating this block.

	Parameters:

	
	block (XBlock) – The block to retrieve asides for.

	aside_type (str) – the type of the aside

	
get_asides(block)

	Return instances for all of the asides that will decorate this block.

	Parameters:

	block (XBlock) – The block to render retrieve asides for.

	Returns:

	List of XBlockAside instances

	
get_block(usage_id, for_parent=None)

	Create an XBlock instance in this runtime.

The usage_id is used to find the XBlock class and data.

	
handle(block, handler_name, request, suffix='')

	Handles any calls to the specified handler_name.

Provides a fallback handler if the specified handler isn’t found.

	Parameters:

	
	handler_name – The name of the handler to call

	request (webob.Request) – The request to handle

	suffix – The remainder of the url, after the handler url prefix, if available

	
abstract handler_url(block, handler_name, suffix='', query='', thirdparty=False)

	Get the actual URL to invoke a handler.

handler_name is the name of your handler function. Any additional
portion of the url will be passed as the suffix argument to the handler.

The return value is a complete absolute URL that will route through the
runtime to your handler.

	Parameters:

	
	block – The block to generate the url for

	handler_name – The handler on that block that the url should resolve to

	suffix – Any path suffix that should be added to the handler url

	query – Any query string that should be added to the handler url
(which should not include an initial ? or &)

	thirdparty – If true, create a URL that can be used without the
user being logged in. This is useful for URLs to be used by third-party
services.

	
layout_asides(block, context, frag, view_name, aside_frag_fns)

	Execute and layout the aside_frags wrt the block’s frag. Runtimes should feel free to override this
method to control execution, place, and style the asides appropriately for their application

This default method appends the aside_frags after frag. If you override this, you must
call wrap_aside around each aside as per this function.

	Parameters:

	
	block (XBlock) – the block being rendered

	frag (str [https://docs.python.org/3/library/stdtypes.html#str]) – The HTML result from rendering the block

	aside_frag_fns (list [https://docs.python.org/3/library/stdtypes.html#list]((aside, aside_fn))) – The asides and closures for rendering to call

	
load_aside_type(aside_type)

	Returns a subclass of XBlockAside that corresponds to the specified aside_type.

	
load_block_type(block_type)

	Returns a subclass of XBlock that corresponds to the specified block_type.

	
abstract local_resource_url(block, uri)

	Get the URL to load a static resource from an XBlock.

block is the XBlock that owns the resource.

	uri is a relative URI to the resource. The XBlock class’s
	get_local_resource(uri) method should be able to open the resource
identified by this uri.

Typically, this function uses open_local_resource defined on the
XBlock class, which by default will only allow resources from the
“public/” directory of the kit. Resources must be placed in “public/”
to be successfully served with this URL.

The return value is a complete absolute URL which will locate the
resource on your runtime.

	
parse_xml_file(fileobj)

	Parse an open XML file, returning a usage id.

	
parse_xml_string(xml)

	Parse a string of XML, returning a usage id.

	
abstract publish(block, event_type, event_data)

	Publish an event.

For example, to participate in the course grade, an XBlock should set
has_score to True, and should publish a grade event whenever the grade
changes.

In this case the event_type would be grade, and the event_data
would be a dictionary of the following form:

{
 'value': <number>,
 'max_value': <number>,
}

The grade event represents a grade of value/max_value for the current
user.

block is the XBlock from which the event originates.

	
query(block)

	Query for data in the tree, starting from block.

Returns a Query object with methods for navigating the tree and
retrieving information.

	
querypath(block, path)

	An XPath-like interface to query.

	
render(block, view_name, context=None)

	Render a block by invoking its view.

Finds the view named view_name on block. The default view will be
used if a specific view hasn’t be registered. If there is no default
view, an exception will be raised.

The view is invoked, passing it context. The value returned by the
view is returned, with possible modifications by the runtime to
integrate it into a larger whole.

	
render_asides(block, view_name, frag, context)

	Collect all of the asides’ add ons and format them into the frag. The frag already
has the given block’s rendering.

	
render_child(child, view_name=None, context=None)

	A shortcut to render a child block.

Use this method to render your children from your own view function.

If view_name is not provided, it will default to the view name you’re
being rendered with.

Returns the same value as render().

	
render_children(block, view_name=None, context=None)

	Render a block’s children, returning a list of results.

Each child of block will be rendered, just as render_child() does.

Returns a list of values, each as provided by render().

	
abstract resource_url(resource)

	Get the URL for a static resource file.

resource is the application local path to the resource.

The return value is a complete absolute URL that will locate the
resource on your runtime.

	
save_block(block)

	Finalize/commit changes for the field data from the specified block.
Called at the end of an XBlock’s save() method. Runtimes may ignore this
as generally the field data implementation is responsible for persisting
changes.

(The main use case here is a runtime and field data implementation that
want to store field data in XML format - the only way to correctly
serialize a block to XML is to ask the block to serialize itself all at
once, so such implementations cannot persist changes on a field-by-field
basis.)

	Parameters:

	block (XBlock) – the block being saved

	
service(block, service_name)

	Return a service, or None.

Services are objects implementing arbitrary other interfaces. They are
requested by agreed-upon names, see [XXX TODO] for a list of possible
services. The object returned depends on the service requested.

XBlocks must announce their intention to request services with the
XBlock.needs or XBlock.wants decorators. Use needs if you assume
that the service is available, or wants if your code is flexible and
can accept a None from this method.

Runtimes can override this method if they have different techniques for
finding and delivering services.

	Parameters:

	
	block (XBlock) – this block’s class will be examined for service
decorators.

	service_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the service requested.

	Returns:

	An object implementing the requested service, or None.

	
property user_id

	Access the current user ID.

Deprecated in favor of a ‘user’ service.

	
wrap_aside(block, aside, view, frag, context)

	Creates a div which identifies the aside, points to the original block,
and writes out the json_init_args into a script tag.

The default implementation creates a frag to wraps frag w/ a div identifying the xblock. If you have
javascript, you’ll need to override this impl

	
wrap_xblock(block, view, frag, context)

	Creates a div which identifies the xblock and writes out the json_init_args into a script tag.

If there’s a wrap_child method, it calls that with a deprecation warning.

The default implementation creates a frag to wraps frag w/ a div identifying the xblock. If you have
javascript, you’ll need to override this impl

Plugins API

	
class xblock.plugin.Plugin

	Base class for a system that uses entry_points to load plugins.

Implementing classes are expected to have the following attributes:

entry_point: The name of the entry point to load plugins from.

	
classmethod load_class(identifier, default=None, select=None)

	Load a single class specified by identifier.

If identifier specifies more than a single class, and select is not None,
then call select on the list of entry_points. Otherwise, choose
the first one and log a warning.

If default is provided, return it if no entry_point matching
identifier is found. Otherwise, will raise a PluginMissingError

If select is provided, it should be a callable of the form:

def select(identifier, all_entry_points):
 # ...
 return an_entry_point

The all_entry_points argument will be a list of all entry_points matching identifier
that were found, and select should return one of those entry_points to be
loaded. select should raise PluginMissingError if no plugin is found, or AmbiguousPluginError
if too many plugins are found

	
classmethod load_classes(fail_silently=True)

	Load all the classes for a plugin.

Produces a sequence containing the identifiers and their corresponding
classes for all of the available instances of this plugin.

fail_silently causes the code to simply log warnings if a
plugin cannot import. The goal is to be able to use part of
libraries from an XBlock (and thus have it installed), even if
the overall XBlock cannot be used (e.g. depends on Django in a
non-Django application). There is disagreement about whether
this is a good idea, or whether we should see failures early
(e.g. on startup or first page load), and in what
contexts. Hence, the flag.

	
classmethod register_temp_plugin(class_, identifier=None, dist='xblock')

	Decorate a function to run with a temporary plugin available.

Use it like this in tests:

@register_temp_plugin(MyXBlockClass):
def test_the_thing():
 # Here I can load MyXBlockClass by name.

	
class xblock.reference.plugins.Filesystem(help=None, default=fields.UNSET, scope=ScopeBase(user=UserScope.NONE, block=BlockScope.DEFINITION, name='content'), display_name=None, values=None, enforce_type=False, xml_node=False, force_export=False, **kwargs)

	An enhanced pyfilesystem.

This returns a file system provided by the runtime. The file
system has two additional methods over a normal pyfilesytem:

	get_url allows it to return a URL for a file

	expire allows it to create files which may be garbage
collected after a preset period. edx-platform and
xblock-sdk do not currently garbage collect them,
however.

More information can be found at: https://github.com/openedx/django-pyfs

The major use cases for this are storage of large binary objects,
pregenerating per-student data (e.g. pylab plots), and storing
data which should be downloadable (for example, serving will typically be faster through this than serving that
up through XBlocks views.

Exceptions API

Module for all xblock exception classes

	
exception xblock.exceptions.DisallowedFileError

	Raised by XBlock.open_local_resource() or XBlockAside.open_local_resource().

	
exception xblock.exceptions.FieldDataDeprecationWarning

	Warning for use of deprecated _field_data accessor

	
exception xblock.exceptions.InvalidScopeError(invalid_scope, valid_scopes=None)

	Raised to indicated that operating on the supplied scope isn’t allowed by a KeyValueStore

	
exception xblock.exceptions.JsonHandlerError(status_code, message)

	Raised by a function decorated with XBlock.json_handler to indicate that an
error response should be returned.

	
get_response(**kwargs)

	Returns a Response object containing this object’s status code and a
JSON object containing the key “error” with the value of this object’s
error message in the body. Keyword args are passed through to
the Response.

	
exception xblock.exceptions.KeyValueMultiSaveError(saved_field_names)

	Raised to indicated an error in saving multiple fields in a KeyValueStore

Create a new KeyValueMultiSaveError

saved_field_names - an iterable of field names (strings) that were
successfully saved before the exception occurred

	
exception xblock.exceptions.NoSuchDefinition

	Raised by IdReader.get_block_type() if the definition doesn’t exist.

	
exception xblock.exceptions.NoSuchHandlerError

	Raised to indicate that the requested handler was not found.

	
exception xblock.exceptions.NoSuchServiceError

	Raised to indicate that a requested service was not found.

	
exception xblock.exceptions.NoSuchUsage

	Raised by IdReader.get_definition_id() if the usage doesn’t exist.

	
exception xblock.exceptions.NoSuchViewError(block, view_name)

	Raised to indicate that the view requested was not found.

Create a new NoSuchViewError

	Parameters:

	
	block – The XBlock without a view

	view_name – The name of the view that couldn’t be found

	
exception xblock.exceptions.UserIdDeprecationWarning

	Warning for use of deprecated user_id accessor

	
exception xblock.exceptions.XBlockNotFoundError(usage_id)

	Raised to indicate that an XBlock could not be found with the requested usage_id

	
exception xblock.exceptions.XBlockParseException

	Raised if parsing the XBlock olx fails.

	
exception xblock.exceptions.XBlockSaveError(saved_fields, dirty_fields, message=None)

	Raised to indicate an error in saving an XBlock

Create a new XBlockSaveError

saved_fields - a set of fields that were successfully
saved before the error occurred
dirty_fields - a set of fields that were left dirty after the save

Open edX XBlock Tutorial

	Introduction
	Other Open edX Resources

	XBlock Overview
	Introduction to XBlocks

	XBlock Examples

	Build an XBlock: Quick Start
	Install XBlock Prerequisites

	Set Up the XBlock Software Development Kit

	Create Your First XBlock

	What Browsers Do I Need to Support?

	Anatomy of an XBlock
	The XBlock Python File

	The XBlock HTML File

	The XBlock JavaScript File

	The XBlock Stylesheets

	Customize Your XBlock
	Customize myxblock.py

	Customize myxblock.html

	Customize myxblock.js

	Customize myxblock.css

	XBlock Concepts
	XBlock Fields

	XBlock Methods

	XBlock Fragments

	XBlock Children

	XBlock Runtimes

	XBlocks, Events, and Grading

	XBlocks and the edX Platform
	Open edX Studio as an XBlock Runtime

	Open edX Learning Management System as an XBlock Runtime

	Deploy Your XBlock in Devstack

	Submit Your XBlock to edX

	Open edX Glossary

Appendices

	Using XBlock Software Development Kit
	Getting Started with the XBlock SDK

Introduction

The Open edX XBlock Tutorial is created using RST [http://docutils.sourceforge.net/rst.html] files and Sphinx [http://sphinx-doc.org/]. You,
the user community, can help update and revise this documentation project on
GitHub.

https://github.com/openedx/XBlock/tree/master/docs/xblock-tutorial/

The Open edX community welcomes contributions from other Open edX community
members. You can find guidelines for how to contribute to Open edX documentation [https://github.com/openedx/docs.openedx.org#readme]
in the GitHub openedx/docs.openedx.org repository - although note that these
specific docs are authored in the openedx/XBlock repository.

Other Open edX Resources

The docs.openedx.org [https://docs.openedx.org/en/latest/] site has numerous
resources for learning about the Open edX platform. Specifically, there are
pages of information that are targeted at the following audiences:

	Users of named releases [https://docs.openedx.org/en/latest/community/release_notes/index.html]

	Educators (those using the Open edX platform for teaching) [https://docs.openedx.org/en/latest/educators/index.html]

	Course Operators (those engaged in the mechanics of running an Open edX
course) [https://docs.openedx.org/en/latest/course_ops/index.html]

	Site Operators [https://docs.openedx.org/en/latest/site_ops/index.html]

	Developers [https://docs.openedx.org/en/latest/developers/index.html]

	Documentors [https://docs.openedx.org/en/latest/documentors/index.html]

	Translators [https://docs.openedx.org/en/latest/translators/index.html]

XBlock Overview

	Introduction to XBlocks
	Overview

	XBlock Independence and Interoperability

	XBlocks Compared to Web Applications

	XBlock API and Runtimes

	XBlocks and the Open edX Platform

	XBlocks for Developers

	XBlock Examples
	Google Drive & Calendar XBlock

	Examples in the XBlock SDK

Introduction to XBlocks

This section introduces XBlocks.

	Overview

	XBlock Independence and Interoperability

	XBlocks Compared to Web Applications

	XBlock API and Runtimes

	XBlocks and the Open edX Platform

	XBlocks for Developers

Overview

As a developer, you build XBlocks that course teams use to create independent
course components that work seamlessly with other components in an online
course.

For example, you can build XBlocks to represent individual problems or pieces
of text or HTML content. Furthermore, like Legos, XBlocks are composable; you
can build XBlocks to represent larger structures such as lessons, sections, and
entire courses.

A primary advantage to XBlocks is that they are sharable. The code you write
can be deployed in any instance of the Open edX Platform or other XBlock runtime
application, then used by any course team using that system.

In educational applications, XBlocks can be used to represent individual
problems, web-formatted text and videos, interactive simulations and labs, or
collaborative learning experiences. Furthermore, XBlocks are composable,
allowing an XBlock developer to control the display of other XBlocks to compose
lessons, sections, and entire courses.

XBlock Independence and Interoperability

You must design your XBlock to meet two goals.

	The XBlock must be independent of other XBlocks. Course teams must be able to
use the XBlock without depending on other XBlocks.

	The XBlock must work together with other XBlocks. Course teams must be
able to combine different XBlocks in flexible ways.

XBlocks Compared to Web Applications

XBlocks are like miniature web applications: they maintain state in a storage
layer, render themselves through views, and process user actions through
handlers.

XBlocks differ from web applications in that they render only a small piece of
a complete web page.

Like HTML <div> tags, XBlocks can represent components as small as a
paragraph of text, a video, or a multiple choice input field, or as large as a
section, a chapter, or an entire course.

XBlock API and Runtimes

Any web application can be an XBlock runtime by
implementing the XBlock API. Note that the XBlock API is not a RESTful API.
XBlock runtimes can compose web pages out of XBlocks that were developed by
programmers who do not need to know anything about the other components that a
web page might be using or displaying.

XBlocks and the Open edX Platform

The Open edX Platform is an XBlock runtime and the Open edX community
currently provides most of the support for the development of the XBlock library and specification.
Programmers who use Tutor or the edx-platform devstack instead of the xblock-sdk to
develop an XBlock should make sure that their XBlock is fully compliant with
the XBlock specification before deploying to other XBlock runtimes. More
specifically, XBlocks should package any services provided by edx-platform that
a different XBlock compliant runtime might not provide.

The Open edX Platform currently has a large suite of XBlocks built into its primary
repository that are available to course developers. Those XBlocks include HTML
content, videos, and interactive problems. The Open edX Platform also includes many
specialized XBlocks such as the Google Drive file tool [https://edx.readthedocs.io/projects/edx-partner-course-staff/en/latest/exercises_tools/google_docs.html]
and Open Response Assessments [https://edx.readthedocs.io/projects/edx-partner-course-staff/en/latest/exercises_tools/open_response_assessments/OpenResponseAssessments.html]. For more information,
see XBlocks and the edX Platform.

XBlocks for Developers

Developers can select from functionality developed by the Open edX community by
installing an XBlock on their Open edX instance. Developers can integrate
new or propriety functionality for use in XBlock runtimes by developing a new
XBlock using the supported XBlock API.

XBlocks are like miniature web applications: they maintain state in a storage
layer, render themselves through views, and process user actions through
handlers. XBlocks differ from web applications in that they render only a small
piece of a complete web page. Like HTML <div> tags, XBlocks can represent
components as small as a paragraph of text, a video, or a multiple choice input
field, or as large as a section, a chapter, or an entire course.

Prerequisites

This tutorial is for developers who are new to XBlock. To use this tutorial,
you should have basic knowledge of the following technologies.

	Python

	JavaScript

	HTML and CSS

	Python VirtualEnv [http://www.virtualenv.org/en/latest/]

	Git [https://help.github.com/articles/set-up-git]

XBlock Resources

This tutorial is meant to guide developers through the process of creating an
XBlock, and to explain the concepts and
anatomy of XBlocks.

The XBlock SDK [https://github.com/openedx/xblock-sdk] supports the creation of new XBlocks.
Developers should also see the Open edX XBlock API Guide.

XBlock Independence and Interoperability

You must design your XBlock to meet two criteria.

	The XBlock must be independent of other XBlocks. Course teams must be able to
use the XBlock without using other XBlocks.

	The XBlock must work together with other XBlocks. Course teams must be able
to combine different XBlocks in flexible ways.

XBlock Examples

This section shows example XBlocks. These examples are meant to demonstrate
simple XBlocks and are not meant to showcase the range of capabilities.

	Google Drive & Calendar XBlock

	Examples in the XBlock SDK

Google Drive & Calendar XBlock

Course teams can use the Google Drive and Calendar XBlock [https://github.com/openedx/xblock-google-drive] to embed Google
documents and calendars in their courseware.

The Google Drive and Calendar XBlock is created and stored in a separate GitHub
repository. You can explore the contents of this XBlock repository to learn how
it is structured and developed.

Instructions are provided so that you can install the XBlock on your Open
edX system. For more information, see XBlocks and the edX Platform.

Adding the XBlock to Courseware

When the Google Drive and Calendar XBlock is installed on an Open edX instance,
course teams can add Google documents and calendars to courseware.

For example, in Studio, course teams can add and configure a Google calendar
component.

[image: The Google Calendar editor in Studio.]
Course teams or developers can also add a Google calendar using OLX (open learning XML).

<google-calendar
 url_name="4115e717366045eaae7764b2e1f25e4c"
 calendar_id="abcdefghijklmnop1234567890@group.calendar.google.com"
 default_view="1"
 display_name="Class Schedule"
/>

For more information, see Google calendar tool [https://edx.readthedocs.io/projects/edx-partner-course-staff/en/latest/exercises_tools/google_calendar.html] and Google Drive file tool [https://edx.readthedocs.io/projects/edx-partner-course-staff/en/latest/exercises_tools/google_docs.html]
in Building and Running an Open edX Course.

Viewing the XBlock

When course teams use the Google Drive and Calendar XBlock, learners can view
the referenced Google documents and calendars directly in their the courseware.

[image: A Google spreadsheet rendered in the LMS.]

Examples in the XBlock SDK

The XBlock SDK [https://github.com/openedx/xblock-sdk] that you use in this tutorial also contains several example
XBlocks.

We will use the Thumbs XBlock [https://github.com/openedx/xblock-sdk/tree/master/sample_xblocks/thumbs] in the sections Customize Your XBlock
and Anatomy of an XBlock.

You can explore the other example XBlocks in the XBlock SDK.

	View Counter XBlock [https://github.com/openedx/xblock-sdk/blob/master/sample_xblocks/basic/view_counter.py]

	Problem XBlock [https://github.com/openedx/xblock-sdk/blob/master/sample_xblocks/basic/problem.py]

	Slider XBlock [https://github.com/openedx/xblock-sdk/blob/master/sample_xblocks/basic/slider.py]

	Several Content XBlocks [https://github.com/openedx/xblock-sdk/blob/master/sample_xblocks/basic/content.py]

	Several Structure XBlocks [https://github.com/openedx/xblock-sdk/blob/master/sample_xblocks/basic/structure.py]

Build an XBlock: Quick Start

This part of the tutorial guides you through building an XBlock. At the end,
you will have the skeleton of an XBlock that you can then customize.

To continue, see the following sections.

	Install XBlock Prerequisites
	Python 3.8

	Git

	A Virtual Environment

	Set Up the XBlock Software Development Kit
	Create a Directory for XBlock Work

	Create and Activate the Virtual Environment

	Clone the XBlock Software Development Kit

	Create Your First XBlock
	Create an XBlock

	Install the XBlock

	Create the SQLite Database

	Run the XBlock SDK Server

	Next Steps

	What Browsers Do I Need to Support?

Install XBlock Prerequisites

To build an XBlock, you must have the following tools on your computer.

	Python 3.8

	Git

	A Virtual Environment

Python 3.8

To run the a virtual environment and the XBlock SDK, and to build an XBlock,
you must have Python 3.8 installed on your computer.

Download Python [https://www.python.org/downloads/release/python-386/] for your operating system and follow the installation
instructions.

Git

Open edX repositories, including XBlock and the XBlock SDK, are stored on GitHub.

To build your own XBlock, and to deploy it later, you must use Git for source
control.

If you do not have Git installed, or you are are unfamiliar with the tool, see
the GitHub Help [https://help.github.com/articles/set-up-git].

A Virtual Environment

It is recommended that you develop your XBlock using a Python virtual
environment. A virtual environment is a tool to keep the dependencies required
by different projects in separate places.

With a virtual environment you can manage the requirements of your XBlock in a
separate location so they do not conflict with requirements of other Python
applications you might need.

The instructions and examples in this tutorial use VirtualEnv [http://www.virtualenv.org/en/latest/] and
VirtualEnvWrapper [http://virtualenvwrapper.readthedocs.io/en/latest] to build XBlocks. You can also use PyEnv [https://github.com/yyuu/pyenv].

After you have installed Python 3.8, follow the VirtualEnv Installation [https://virtualenv.pypa.io/en/latest/installation.html]
instructions.

For information on creating the virtual environment for your XBlock, see
Create and Activate the Virtual Environment.

Set Up the XBlock Software Development Kit

Before you continue, make sure that you are familiar with the subjects in the
Install XBlock Prerequisites section.

When you have installed all prerequisites, you are ready to set up the XBlock
SDK [https://github.com/openedx/xblock-sdk] in a virtual environment. To do this, complete the following steps.

	Create a Directory for XBlock Work

	Create and Activate the Virtual Environment

	Clone the XBlock Software Development Kit

Create a Directory for XBlock Work

It is recommended that you create a directory in which to store all your XBlock
work, including a virtual environment, the XBlock SDK, and the XBlocks you
develop.

	At the command prompt, run the following command to create the directory.

$ mkdir xblock_development

	Change directories to the xblock_development directory.

$ cd xblock_development

The rest of your work will be from this directory.

Create and Activate the Virtual Environment

You must have a virtual environment tool installed on your computer. For more
information, see Install XBlock Prerequisites. If you have multiple
Python versions on your machine, see managing different Python versions with
virtualenv [https://saturncloud.io/blog/how-to-use-different-python-versions-with-virtualenv/].

Then create the virtual environment in your xblock_development directory.

	At the command prompt in xblock_development, run the following
command to create the virtual environment.

$ virtualenv xblock-env

	Run the following command to activate the virtual environment.

$ source xblock-env/bin/activate

When the virtual environment is activated, the command prompt shows the name
of the virtual directory in parentheses.

(xblock-env) $

Clone the XBlock Software Development Kit

The XBlock SDK is a Python application you use to help you build new XBlocks.
The XBlock SDK contains three main components:

	An XBlock creation tool that builds the skeleton of a new XBlock.

	An XBlock runtime for viewing and testing your XBlocks during development.

	Sample XBlocks that you can use as the starting point for new XBlocks, and
for your own learning.

After you create and activate the virtual environment, you clone the XBlock SDK [https://github.com/openedx/xblock-sdk] and install its
requirements. To do this, complete the following steps at a command prompt.

	In the xblock_development directory, run the following command to clone
the XBlock SDK repository from GitHub.

(xblock-env) $ git clone https://github.com/openedx/xblock-sdk.git

	In the same directory, create an empty directory called var.

(xblock-env) $ mkdir var

	Run the following command to change to the xblock-sdk directory.

(xblock-env) $ cd xblock-sdk

	Run the following commands to install the XBlock SDK requirements.

(xblock-env) $ make install

	Run the following command to return to the xblock_development directory,
where you will perform the rest of your work.

(xblock-env) $ cd ..

When the requirements are installed, you are in the xblock_development
directory, which contains the var, xblock-env, and xblock-sdk
subdirectories. You can now create your first XBlock.

Create Your First XBlock

Before you continue, make sure that you have set up the XBlock SDK. You then create the XBlock and deploy
it in the XBlock SDK.

	Create an XBlock

	Install the XBlock

	Create the SQLite Database

	Run the XBlock SDK Server

	Next Steps

Create an XBlock

You use the XBlock SDK to create skeleton files for an XBlock. To do this,
follow these steps at a command prompt.

	Change to the xblock_development directory, which contains the
var, xblock-env, and xblock-sdk subdirectories.

	Run the following command to create the skeleton
files for the XBlock.

(xblock-env) $ xblock-sdk/bin/workbench-make-xblock

Instructions in the command window instruct you to determine a short name
and a class name. Follow the guidelines in the command window to determine
the names that you want to use.

You will be prompted for two pieces of information:

* Short name: a single word, all lower-case, for directory and file
 names. For a hologram 3-D XBlock, you might choose "holo3d".

* Class name: a valid Python class name. It's best if this ends with
 "XBlock", so for our hologram XBlock, you might choose
 "Hologram3dXBlock".

Once you specify those two names, a directory is created in the
``xblock_development`` directory containing the new project.

If you don't want to create the project here, or you enter a name
incorrectly, type Ctrl-C to stop the creation script. If you don't want
the resulting project, delete the directory it created.

	At the command prompt, enter the Short Name you selected for your XBlock.

$ Short name: myxblock

	At the command prompt, enter the Class name you selected for your XBlock.

$ Class name: MyXBlock

The skeleton files for the XBlock are created in the myxblock directory.
For more information about the XBlock files, see
Anatomy of an XBlock.

Install the XBlock

After you create the XBlock, you install it in the XBlock SDK.

In the xblock_development directory, use pip to install your XBlock.

(xblock-env) $ pip install -e myxblock

You can then test your XBlock in the XBlock SDK.

Create the SQLite Database

Before running the XBlock SDK the first time, you must create the SQLite
database.

	In the xblock_development directory, run the following command to create
the database and the tables.

(xblock-env) $ python xblock-sdk/manage.py migrate

Run the XBlock SDK Server

To see the web interface of the XBlock SDK, you must run the SDK server.

In the xblock_development directory, run the following command to start the
server.

(xblock-env) $ python xblock-sdk/manage.py runserver

Note

If you do not specify a port, the XBlock SDK server uses port 8000.
To use a different port, specify it in the runserver command.

Then test that the XBlock SDK is running. In a browser, go to
http://localhost:8000. You should see the following page.

[image: The XBlock SDK home page.]
The page shows the XBlocks installed automatically with the XBlock SDK. Note
that the page also shows the MyXBlock XBlock that you created in
Create Your First XBlock.

Get Help for the XBlock SDK Server

To get help for the XBlock SDK runserver command, run the following
command.

(xblock-env) $ python xblock-sdk/manage.py help

The command window lists and describes the available commands.

Next Steps

You have now completed the Getting Started section of the XBlock tutorial. In
the next sections, you will learn how to use the XBlock SDK, about the anatomy of an XBlock, and how to customize your new XBlock.

What Browsers Do I Need to Support?

For the latest information on browser support for the Open edX platform,
see Open edX Browser Support [https://docs.openedx.org/en/latest/developers/references/developer_guide/testing/browsers.html].

Anatomy of an XBlock

This part of the tutorial explains the XBlock skeleton, and uses examples from
the Thumbs XBlock [https://github.com/openedx/xblock-sdk/tree/master/sample_xblocks/thumbs] that is installed with the XBlock SDK.

The Thumbs XBlock enables learners to vote up or down. The Thumbs XBlock keeps
track of vote totals.

For information about making the XBlock that you created function like the
example Thumbs XBlock, see Customize Your XBlock.

	The XBlock Python File
	Thumb XBlock Fields

	Thumb XBlock Student View

	Thumb XBlock Vote Handler

	The XBlock HTML File

	The XBlock JavaScript File

	The XBlock Stylesheets

The XBlock Python File

This section of the tutorial walks through the Python file, thumbs.py [https://github.com/openedx/xblock-sdk/blob/master/sample_xblocks/thumbs/thumbs.py], for
the Thumbs XBlock example in the XBlock SDK.

If you completed the steps in Build an XBlock: Quick Start, you can find
this file locally at xblock_development/xblock-sdk/sample_xblocks/thumbs/thumbs.py.

In the XBlock Python file, you define fields,
views, handlers, and workbench
scenarios.

	Thumb XBlock Fields

	Thumb XBlock Student View

	Thumb XBlock Vote Handler

Thumb XBlock Fields

The thumbs.py file defines the following fields for the XBlock in the
ThumbsBlockBase class.

class ThumbsBlockBase(object):
 upvotes = Integer(
 help="Number of up votes",
 default=0,
 scope=Scope.user_state_summary
)
 downvotes = Integer(
 help="Number of down votes",
 default=0,
 scope=Scope.user_state_summary
)
 voted = Boolean(
 help="Has this student voted?",
 default=False,
 scope=Scope.user_state
)

Note the following details about the fields in the Thumbs XBlock.

	upvotes and downvotes store the cumulative up and down votes of
users.

These fields have the scope Scope.user_state_summary. This indicates that
the data in these fields are specific to the XBlock and the same for all
users.

	voted stores whether the user has voted. This field has the scope
Scope.user_state. This indicates that the data in this field applies to
the XBlock and to the specific user.

For more information, see XBlock Fields.

Thumb XBlock Student View

The thumbs.py file defines the student view for the XBlock in the
ThumbsBlockBase class.

def student_view(self, context=None): # pylint: disable=W0613
 """
 Create a fragment used to display the XBlock to a student.
 `context` is a dictionary used to configure the display (unused)

 Returns a `Fragment` object specifying the HTML, CSS, and JavaScript
 to display.
 """

 # Load the HTML fragment from within the package and fill in the template

 html_str = pkg_resources.resource_string(
 __name__,
 "static/html/thumbs.html".decode('utf-8')
)
 frag = Fragment(str(html_str).format(block=self))

 # Load the CSS and JavaScript fragments from within the package
 css_str = pkg_resources.resource_string(
 __name__,
 "static/css/thumbs.css".decode('utf-8')
)
 frag.add_css(str(css_str))

 js_str = pkg_resources.resource_string(
 __name__,
 "static/js/src/thumbs.js".decode('utf-8')
)
 frag.add_javascript(str(js_str))

 frag.initialize_js('ThumbsBlock')
 return frag

The student view composes and returns the fragment from static HTML,
JavaScript, and CSS files. A web page displays the fragment to learners.

Note the following details about student view.

	The static HTML content is added when the fragment is initialized.

html_str = pkg_resources.resource_string(
 __name__,
 "static/html/thumbs.html".decode('utf-8')
)
frag = Fragment(str(html_str).format(block=self))

	The JavaScript and CSS file contents are added to the fragment with the
add_javascript() and add_css() methods.

	The JavaScript in the fragment must be initialized using the name of the
XBlock class. The name also maps to the function that initializes the XBlock
in the JavaScript file.

frag.initialize_js('ThumbsBlock')

For more information, see View Methods.

Thumb XBlock Vote Handler

The thumbs.py file defines a handler that adds a user’s vote to the XBlock.

@XBlock.json_handler
def vote(self, data, suffix=''): # pylint: disable=unused-argument
 """
 Update the vote count in response to a user action.
 """
 # Here is where we would prevent a student from voting twice, but then
 # we couldn't click more than once in the demo!
 #
 # if self.voted:
 # log.error("cheater!")
 # return

 if data['voteType'] not in ('up', 'down'):
 log.error('error!')
 return

 if data['voteType'] == 'up':
 self.upvotes += 1
 else:
 self.downvotes += 1

 self.voted = True

 return {'up': self.upvotes, 'down': self.downvotes}

Note the following details about the vote handler.

	The upvotes or downvotes fields are updated based on the user’s vote.

	The voted field is set to True for the user.

	The updated upvotes and downvotes fields are returned.

For more information, see Handler Methods.

The XBlock HTML File

This section of the tutorial walks through the HTML file, thumbs.html [https://github.com/openedx/xblock-sdk/blob/master/sample_xblocks/thumbs/static/html/thumbs.html], that
is part of the Thumbs XBlock in the XBlock SDK.

If you completed the steps in Build an XBlock: Quick Start, you can find
this file locally at xblock_development/xblock-sdk/sample_xblocks/thumbs/static/html/thumbs.html.

In the XBlock HTML file, you define the HTML content that is added to a
fragment. The HTML content can reference the XBlock
fields. The fragment is returned by the view
method, to be displayed by the runtime application.

<p>
 {self.upvotes}↑
 {self.downvotes}↓
</p>

Note the following details about the HTML file.

	The class values reference styles in the thumbs.css file. For more
information, see The XBlock Stylesheets.

	The values self.upvotes and self.downvotes reference the fields in
the XBlock Python class.

The XBlock JavaScript File

This section of the tutorial walks through the JavaScript file, thumbs.js [https://github.com/openedx/xblock-sdk/blob/master/sample_xblocks/thumbs/static/js/src/thumbs.js],
that is part of the Thumbs XBlock in the XBlock SDK.

If you completed the steps in Build an XBlock: Quick Start, you can find
this file locally at xblock_development/xblock-sdk/sample_xblocks/thumbs/static/js/src/thumbs.js.

In the XBlock JavaScript file, you define code that manages user interaction
with the XBlock. The code is added to a fragment.

The XBlock’s JavaScript uses the runtime handler, and can use the children
and childMap functions as needed.

The JavaScript references the XBlock fields
and methods. The fragment is returned by the view
method, to be displayed by the runtime
application.

function ThumbsAside(runtime, element, block_element, init_args) {
 return new ThumbsBlock(runtime, element, init_args);
}

function ThumbsBlock(runtime, element, init_args) {
 function updateVotes(votes) {
 $('.upvote .count', element).text(votes.up);
 $('.downvote .count', element).text(votes.down);
 }

 var handlerUrl = runtime.handlerUrl(element, 'vote');

 $('.upvote', element).click(function(eventObject) {
 $.ajax({
 type: "POST",
 url: handlerUrl,
 data: JSON.stringify({voteType: 'up'}),
 success: updateVotes
 });
 });

 $('.downvote', element).click(function(eventObject) {
 $.ajax({
 type: "POST",
 url: handlerUrl,
 data: JSON.stringify({voteType: 'down'}),
 success: updateVotes
 });
 });
 return {};
};

Note the following details about the JavaScript file.

	The function ThumbsBlock initializes the XBlock. A JavaScript function to
initialize the XBlock is required.

	The ThumbsBlock function maps to the constructor in the XBlock
Python file and provides access to its methods and
fields.

	The ThumbsBlock function uses the runtime handler.

var handlerUrl = runtime.handlerUrl(element, 'vote');

	The ThumbsBlock function includes the POST commands to increase the up
and down votes in the XBlock.

The XBlock JavaScript code can also use the children and childMap
functions as needed. For more information, see XBlock Children.

The XBlock Stylesheets

This section of the tutorial walks through the CSS file, thumbs.css [https://github.com/openedx/xblock-sdk/blob/master/sample_xblocks/thumbs/static/css/thumbs.css], that
is part of the Thumbs XBlock in the XBlock SDK.

If you completed the steps in Build an XBlock: Quick Start, you can find
this file locally at xblock_development/xblock-sdk/sample_xblocks/thumbs/static/css/thumbs.css.

In the XBlock CSS file, you define the styles that are added to the
fragment that is returned by the view method to be displayed by the runtime
application.

.upvote, .downvote {
 cursor: pointer;
 border: 1px solid #888;
 padding: 0 .5em;
}
.upvote { color: green; }
.downvote { color: red; }

The styles in thumbs.css are referenced in the XBlock HTML file.

Customize Your XBlock

Now that you have created your XBlock skeleton, myxblock, you need to make
it do something. This part of the tutorial explains modifying myxblock; for
practical purposes, we will update it to match the Thumbs XBlock [https://github.com/openedx/xblock-sdk/tree/master/sample_xblocks/thumbs] that is
installed with the XBlock SDK.

For more information about the Thumbs XBlock, see Anatomy of an XBlock

For more information about the different components of an XBlock, see
XBlock Concepts.

	Customize myxblock.py
	The Default XBlock Python File

	Add Comments

	Add XBlock Fields

	Define the Student View

	Define the Vote Handler

	Next Step

	Customize myxblock.html
	The Default XBlock HTML File

	Add HTML Content

	Check HTML Against the Thumbs XBlock

	Next Step

	Customize myxblock.js
	The Default XBlock JavaScript File

	Add JavaScript Code

	Check JavaScript Against the Thumbs XBlock

	Next Step

	Customize myxblock.css
	The Default XBlock CSS File

	Add CSS Code

	Check CSS Against the Thumbs XBlock

	Congrats!

Customize myxblock.py

This section describes how to modify the Python file of the XBlock you created,
myxblock.py, to provide the functionality in the Thumbs XBlock example in
the XBlock SDK.

In myxblock.py, you will define fields,
views, handlers, and workbench
scenarios.

	The Default XBlock Python File

	Add Comments

	Add XBlock Fields

	Define the Student View

	Define the Vote Handler

	Next Step

The Default XBlock Python File

When you create a new XBlock, the default
Python file is created automatically, with skeletal functionality defined. In
the xblock_development/myxblock/myxblock/ directory, see the file
myxblock.py.

"""TO-DO: Write a description of what this XBlock is."""

import pkg_resources

from web_fragments.fragment import Fragment
from xblock.core import XBlock
from xblock.fields import Integer, Scope

class MyXBlock(XBlock):
 """
 TO-DO: document what your XBlock does.
 """

 # Fields are defined on the class. You can access them in your code as
 # self.<fieldname>.

 # TO-DO: delete count, and define your own fields.
 count = Integer(
 default=0, scope=Scope.user_state,
 help="A simple counter, to show something happening",
)

 def resource_string(self, path):
 """Handy helper for getting resources from our kit."""
 data = pkg_resources.resource_string(__name__, path)
 return data.decode("utf8")

 # TO-DO: change this view to display your data your own way.
 def student_view(self, context=None):
 """
 The primary view of the MyXBlock, shown to students
 when viewing courses.
 """
 html = self.resource_string("static/html/myxblock.html")
 frag = Fragment(html.format(self=self))
 frag.add_css(self.resource_string("static/css/myxblock.css"))
 frag.add_javascript(self.resource_string("static/js/src/myxblock.js"))
 frag.initialize_js('MyXBlock')
 return frag

 # TO-DO: change this handler to perform your own actions. You may need more
 # than one handler, or you may not need any handlers at all.
 @XBlock.json_handler
 def increment_count(self, data, suffix=''):
 """
 An example handler, which increments the data.
 """
 # Just to show data coming in...
 assert data['hello'] == 'world'

 self.count += 1
 return {"count": self.count}

 # TO-DO: change this to create the scenarios you'd like to see in the
 # workbench while developing your XBlock.
 @staticmethod
 def workbench_scenarios():
 """A canned scenario for display in the workbench."""
 return [
 ("MyXBlock",
 """<myxblock/>
 """),
 ("Multiple MyXBlock",
 """<vertical_demo>
 <myxblock/>
 <myxblock/>
 <myxblock/>
 </vertical_demo>
 """),
]

Add Comments

As a best practice and because XBlocks can be shared, you should add comments
to the myxblock.py file. Replace the “TO DO” indicators with a description
of what the XBlock does and any details future developers or users would want
to know.

Add XBlock Fields

You determine the data your XBlock stores through fields. Fields store user and XBlock state as JSON data.

To customize your myxblock.py file so that it has the same functionality
as the thumbs.py file, you need to add three fields to the XBlock, each
with the right scope.

	upvotes, to store the number of times users up-vote the XBlock. The value
applies to the XBlock and all users collectively.

	downvotes, to store the number of times users down-vote the XBlock. The
value applies to the XBlock and all users collectively.

	voted, to record whether or not the user has voted. The value applies to
the XBlock and each user individually.

Review the XBlock Fields section, then add the required fields to
myxblock.py. You can remove the count field, which was defined
automatically when you created the XBlock.

Check Fields Against the Thumbs XBlock

After you have defined the fields, check your work against the fields in the
Thumbs XBlock, in the file xblock_development/xblock-sdk/sample_xblocks/thumbs/thumbs.py.

class ThumbsBlockBase(object):
 upvotes = Integer(
 help="Number of up votes",
 default=0,
 scope=Scope.user_state_summary
)
 downvotes = Integer(
 help="Number of down votes",
 default=0,
 scope=Scope.user_state_summary
)
 voted = Boolean(
 help="Has this student voted?",
 default=False,
 scope=Scope.user_state
)

If necessary, make corrections to the fields in your XBlock so that they match
the fields in the Thumbs XBlock.

Note the following details.

	upvotes and downvotes have the scope Scope.user_state_summary.
This indicates that the data in these fields are specific to the XBlock and
the same for all users.

	voted has the scope Scope.user_state. This indicates that the data in
this field applies to the XBlock and to the specific user.

Define the Student View

The XBlock Python file must contain one or more view methods.

To run the XBlock in the Open edX Platform Learning Management System, there must be
a method named student_view. If you intend the XBlock to run in a different
runtime application, you might need to define a
different name. For more information, see Open edX Learning Management System as an XBlock Runtime.

In myxblock.py, examine the student_view method that was defined
automatically when you created the XBlock.

The student view composes and returns the fragment
from static HTML, JavaScript, and CSS files. A web page displays the fragment
to learners.

Note the following details about student view.

	The static HTML is added when the fragment is initialized.

html = self.resource_string("static/html/myxblock.html")
frag = Fragment(unicode(html_str).format(self=self))

	The JavaScript and CSS files are added to the fragment with the
add_javascript() and add_css() methods.

	The JavaScript in the fragment must be initialized using the name of the
XBlock class. The name also maps to the function that initializes the XBlock
in the JavaScript file.

frag.initialize_js('MyXBlock')

As you can see, the necessary functions of the view were added automatically.
Check the student view in myxblock.py against the student view in
thumbs.py [https://github.com/openedx/xblock-sdk/blob/master/sample_xblocks/thumbs/thumbs.py]. Note that the only differences are the file names of the HTML,
CSS, and JavaScript files added to the fragment. As the file names are correct
for MyXBlock, you do not need to edit the student view at all.

Define the Vote Handler

Handlers process input events from the XBlock
JavaScript code. You use handlers to add interactivity to your block. In
your XBlock, you use a handler to process votes from users.

The vote handler in your XBlock must perform the following functions.

	Update upvotes or downvotes fields based on the user’s vote.

	Set the voted field to True for the user.

	Return the updated upvotes and downvotes fields.

Review the XBlock Methods section, then implement the vote handler
in myxblock.py.

You can use any name for the vote handler, and you will use the same name in
the JavaScript code to connect browser events to the vote handler running in
the server. To match the Thumbs XBlock, use the name vote.

Check the Handler Against the Thumbs XBlock

After you have defined the vote handler, check your work against the handler
in the Thumbs XBlock.

@XBlock.json_handler
def vote(self, data, suffix=''): # pylint: disable=unused-argument
 """
 Update the vote count in response to a user action.
 """
 # Here is where we would prevent a student from voting twice, but then
 # we couldn't click more than once in the demo!
 #
 # if self.voted:
 # log.error("cheater!")
 # return

 if data['voteType'] not in ('up', 'down'):
 log.error('error!')
 return

 if data['voteType'] == 'up':
 self.upvotes += 1
 else:
 self.downvotes += 1

 self.voted = True

 return {'up': self.upvotes, 'down': self.downvotes}

If necessary, make corrections to the handler in your XBlock so that it matches
the handler in the Thumbs XBlock.

Next Step

After you complete your customizations to the Python file, you can continue on and
customize the XBlock HTML file.

Customize myxblock.html

This section describes how to modify the static HTML file of the XBlock you
created, myxblock.html, to provide the functionality in the Thumbs XBlock
example in the XBlock SDK.

In myxblock.html, you will define the HTML content that is added to a
fragment. The HTML content can reference the XBlock
fields. The fragment is returned by the view
method.

	The Default XBlock HTML File

	Add HTML Content

	Check HTML Against the Thumbs XBlock

	Next Step

The Default XBlock HTML File

When you create a new XBlock, the default
static HTML file is created automatically, with skeletal functionality defined.
In the xblock_development/myxblock/myxblock/static/html directory, see the
file myxblock.html.

<div class="myxblock_block">
 <p>MyXBlock: count is now
 {self.count} (click me to increment).
 </p>
</div>

The file contains HTML to display the count field that was added by
default to the XBlock. Delete the HTML between the div elements.

Add HTML Content

You can create HTML as needed to display the state of your XBlock. The Thumbs
XBlock displays the up and down votes. Create a single paragraph and follow the
guidelines below.

	Create two span elements, to display up-votes and down-votes.

	Use upvote and downvote as class values for the span elements.
You will define these classes in myxblock.css. For more information, see
Customize myxblock.css.

	Within each span element, create another span element, each with the
class value count. For the value of each embedded span element,
reference the upvotes and downvotes fields you defined in the
Python file for the XBlock.

	For the value of each of the outer span elements, use the HTML unicode
characters [https://en.wikipedia.org/wiki/List_of_XML_and_HTML_character_entity_references] ↑ and &darr to show thumbs up and thumbs down
symbols next to the number of votes.

Check HTML Against the Thumbs XBlock

After you have defined the HTML, check your work against the HTML in the
Thumbs XBlock, in the file xblock_development/xblock-sdk/sample_xblocks/thumbs/static/html/thumbs.html.

<p>
 {self.upvotes}↑
 {self.downvotes}↓
</p>

If necessary, make corrections to the HTML in your XBlock so that it
matches the HTML in the Thumbs XBlock.

Next Step

After you complete your customizations to the HTML file, you can continue on and
customize the XBlock JavaScript file.

Customize myxblock.js

This section describes how to modify the JavaScript file of the XBlock you
created, myxblock.js, to provide the functionality in the Thumbs XBlock
example in the XBlock SDK.

In myxblock.js, you will define code that manages user interaction
with the XBlock. The code is added to a fragment.

	The Default XBlock JavaScript File

	Add JavaScript Code

	Check JavaScript Against the Thumbs XBlock

	Next Step

The Default XBlock JavaScript File

When you create a new XBlock, the default
JavaScript file is created automatically, with skeletal functionality defined.
In the xblock_development/myxblock/myxblock/static/js/snc directory, see
the file myxblock.js.

/* Javascript for MyXBlock. */
function MyXBlock(runtime, element) {

 function updateCount(result) {
 $('.count', element).text(result.count);
 }

 var handlerUrl = runtime.handlerUrl(element, 'increment_count');

 $('p', element).click(function(eventObject) {
 $.ajax({
 type: "POST",
 url: handlerUrl,
 data: JSON.stringify({"hello": "world"}),
 success: updateCount
 });
 });

 $(function ($) {
 /* Here's where you'd do things on page load. */
 });
}

The file contains JavaScript code to increment the count field that was
added by default to the XBlock. Delete this code.

Add JavaScript Code

JavaScript code implements the browser-side functionality you need for your
XBlock. The Thumbs XBlock uses clicks on the up and down vote buttons to call
the handler to record votes.

Follow the guidelines below to implement JavaScript code.

	Add the function MyXBlock to initialize the XBlock.

The MyXBlock function maps to the constructor in the XBlock
Python file and provides access to its methods and
fields.

	Add the URL to the vote handler to the MyXBlock function.

var handlerUrl = runtime.handlerUrl(element, 'vote');

	Add POST commands in the MyXBlock function to increase the up and
down votes in the XBlock.

Note

Do not change the main function name, MyXBlock.

Check JavaScript Against the Thumbs XBlock

After you have defined the JavaScript code, check your work against the code in
the Thumbs XBlock, in the file xblock_development/xblock-sdk/sample_xblocks/thumbs/static/js/src/thumbs.js.

function ThumbsAside(runtime, element, block_element, init_args) {
 return new ThumbsBlock(runtime, element, init_args);
}

function ThumbsBlock(runtime, element, init_args) {
 function updateVotes(votes) {
 $('.upvote .count', element).text(votes.up);
 $('.downvote .count', element).text(votes.down);
 }

 var handlerUrl = runtime.handlerUrl(element, 'vote');

 $('.upvote', element).click(function(eventObject) {
 $.ajax({
 type: "POST",
 url: handlerUrl,
 data: JSON.stringify({voteType: 'up'}),
 success: updateVotes
 });
 });

 $('.downvote', element).click(function(eventObject) {
 $.ajax({
 type: "POST",
 url: handlerUrl,
 data: JSON.stringify({voteType: 'down'}),
 success: updateVotes
 });
 });
 return {};
};

If necessary, make corrections to the code in your XBlock so that it
matches the code in the Thumbs XBlock.

Next Step

After you complete your customizations to the JavaScript file, you can continue on
and customize the XBlock CSS file.

Customize myxblock.css

This section describes how to modify the static CSS file of the XBlock you
created, myxblock.css, to provide the functionality in the Thumbs XBlock
example in the XBlock SDK.

In myxblock.css, you define the styles that are added to the
fragment that is returned by the view method to be displayed by the runtime
application.

	The Default XBlock CSS File

	Add CSS Code

	Check CSS Against the Thumbs XBlock

	Congrats!

The Default XBlock CSS File

When you create a new XBlock, the default
static CSS file is created automatically, with skeletal functionality defined.
In the xblock_development/myxblock/myxblock/static/css directory, see the
file myxblock.css.

 /* CSS for MyXBlock */

 .myxblock_block .count {
 font-weight: bold;
 }

.myxblock_block p {
 cursor: pointer;
 }

The file contains CSS code to format the count field that was added by
default to the XBlock. Delete this code.

Add CSS Code

You must add CSS code to format the XBlock content. Follow the guidelines
below.

	Create a single class that defines formatting for .upvote and
.downvote.

	The cursor type is pointer.

	The border is 1px, solid, and with the color #888.

	The padding is 0.5em;

	The color for .upvote is green and for downvote is red.

Check CSS Against the Thumbs XBlock

After you have defined the CSS code, check your work against the CSS in the
Thumbs XBlock, in the file xblock_development/xblock-sdk/sample_xblocks/thumbs/static/css/thumbs.css.

.upvote, .downvote {
 cursor: pointer;
 border: 1px solid #888;
 padding: 0 .5em;
}
.upvote { color: green; }
.downvote { color: red; }

If necessary, make corrections to the CSS code in your XBlock so that it
matches the code in the Thumbs XBlock.

The styles in thumbs.css are referenced in the XBlock HTML file.

Congrats!

You’ve completed customizing MyXBlock to have up and down voting functionality.
Read on for more about XBlocks - and have fun making your next XBlock!

XBlock Concepts

You build XBlocks that course teams use to create independent course components
that work seamlessly with other components in an online course. For example,
you can build XBlocks to represent individual problems, lessons, or course
sections. For more information, see Introduction to XBlocks.

This part of the tutorial provides conceptual information about XBlocks that
all XBlock developers must understand.

	XBlock Fields
	XBlock Fields and State

	Field Scope

	Fields and Data Storage

	Initializing Fields

	Fields and OLX

	Field Requirements in the edX Platform

	Default Fields in a New XBlock

	XBlock Methods
	View Methods

	Handler Methods

	Default Methods in a New XBlock

	XBlock Fragments
	Fragment Contents

	Fragments and XBlock Children

	Fragments and Views

	XBlock Children
	XBlock Tree Structure

	Accessing Children (Server-Side)

	Accessing Children (Client-Side)

	XBlock Runtimes
	Runtime Functions

	Extending XBlocks

	JavaScript Runtimes

	XBlock Runtime API

	Rendering XBlocks with the XBlock URL

	XBlocks, Events, and Grading
	When an XBlock Should Emit Events

	Publish Events in Handler Methods

	Publish Grade Events

XBlock Fields

You use XBlock fields to store state data for your XBlock.

	XBlock Fields and State

	Field Scope

	Fields and Data Storage

	Initializing Fields

	Fields and OLX

	Field Requirements in the edX Platform

	Default Fields in a New XBlock

XBlock Fields and State

XBlock fields are Python attributes that store user and XBlock state as JSON
data.

You define the fields in the XBlock Python file. For example, the thumbs.py
file in the XBlock SDK includes three fields.

class ThumbsBlockBase(object):
 upvotes = Integer(
 help="Number of up votes",
 default=0,
 scope=Scope.user_state_summary
)
 downvotes = Integer(
 help="Number of down votes",
 default=0,
 scope=Scope.user_state_summary
)
 voted = Boolean(
 help="Has this student voted?",
 default=False,
 scope=Scope.user_state
)

Field Names

The field names you define in the Python file are also used in the XBlock
JavaScript and HTML code.

Field Parameters

When you initialize an XBlock field, you define three parameters.

	help: A help string for the field that can be used in an application such
as edX Studio.

	default: The default value for the field.

	scope: The scope of the field. For more information, see the next
section.

Field Scope

Field scope is the relationship of the field to users and the XBlock.

You define the field scope when initializing the field in the XBlock Python
file. For example, in thumbs.py, the voted field is initialized to have
the scope user_state.

voted = Boolean(help="Has this student voted?", default=False,
 scope=Scope.user_state)

User Scope

Fields can relate to users in the following ways.

	No user: the field data is not related to any users. No learner activity
created modified the field value, and all learners see the same value.For
example, a field that contains course content is independent of users.

Note

The XBlock cannot modify the value of a field that is not related
to any users.

	One user: the field data is specific to a single user. For example, the
answer to a problem is specific to the user who submitted it.

	All users: the field data is common for all users. Learner activity can
change the field value, and all learners see the same value. For example, the
total number of learners who answer a question is the same for all users.

Note

Field data related to all users is not the same as aggregate or
query data. The same value is shared for all users, and you cannot
associate specific actions to specific users.

XBlock Scope

Fields can relate to XBlocks in the following ways.

	Block usage: the field data is related to an instance, or usage, of the
XBlock in a particular course. In most cases, you use the Block usage
scope. For example, for an XBlock that polls learners and shows totals for
each response, you would need the question and available answers to be
specific to that instance of the XBlock in your course.

	Block definition: the field data is related to the definition of the
XBlock. The definition is specified by the content creator. A definition can
be shared across one or more uses. For example, you could create a single
XBlock definition with many uses, and those uses can appear across
courses or within the same course.

	Block type: The field data is related to the Python type of the XBlock,
and is shared across all instances of the XBlock in all courses.

	All: The field data is related to all XBlocks, of all types. Any
XBlock can access the field data.

Note

When you use the All scope, there is potential for name conflicts. If
you have two fields of the same name with the scope All in different
XBlock types, both fields point to the same data. Therefore you should use
caution when using All.

User and Block Scope Independence

The user and block scope of a field are independent of each other. The field
scope you define specifies both. The following examples show different ways you
can combine user and block scope.

	A user’s progress through a particular set of problems is stored in a field
with the scope One user and XBlock usage.

	The content to display in an XBlock is stored in a field with the scope No
user and Block definition.

	A user’s preferences for a type of XBlock are stored in a field with the
scope with One user and XBlock type.

	Information about the user, such as language or timezone, is stored in a
field with the scope with One user and All.

Scope combinations that are used together frequently are available is a set of
predefined scopes, as described below.

Predefined Scopes

XBlock includes the following predefined scopes that you can use when
configuring fields. Each of these scopes includes the indicated user and block
scope settings.

	Scope.content

	Block definition

	No user

	Scope.settings

	Block usage

	No user

	Scope.user_state

	Block usage

	One user

	Scope.preferences

	Block type

	One user

	Scope.user_info

	All blocks

	One user

	Scope.user_state_summary

	Block usage

	All users

Fields and Data Storage

Because XBlock fields are written and retrieved as single entities, you cannot
store a large amount of data in a single field.

To store very large amounts of data, you should split the data across many
smaller fields.

Initializing Fields

You do not use the __init__ method with XBlocks.

XBlocks can be used in many contexts, and the __init__ method might not
work in those contexts.

To initialize field values, use one of the following alternatives.

	Use xblock.fields.UNIQUE_ID to set a default string value for the field.

	Use a lazy property decorator, so that when a field is first accessed, a
function is called to set the value.

	Run the logic to set the default field value in the view instead of the
__init__ method.

Fields and OLX

XBlock fields map to attributes in the OLX (open learning XML) definition.

For example, you might include the fields href, maxwidth, and
maxheight in a SimpleVideoBlock XBlock. You configure the fields as in
the following example.

class SimpleVideoBlock(XBlock):
 """
 An XBlock providing Embed capabilities for video
 """

 href = String(help="URL of the video page at the provider",
 default=None, scope=Scope.content)
 maxwidth = Integer(help="Maximum width of the video", default=800,
 scope=Scope.content)
 maxheight = Integer(help="Maximum height of the video", default=450,
 scope=Scope.content)

By default, the SimpleVideoBlock XBlock is represented in OLX as in the
following example:

<simplevideo
 href="https://vimeo.com/46100581"
 maxwidth="800"
 maxheight="450"
/>

You can customize the OLX representation of the XBlock by using the
xblock.parse_xml() and xblock.add_xml_to_node() methods.

Field Requirements in the edX Platform

For information about field requirements in the edX Platform, see Open edX LMS and
Open edX Studio.

Default Fields in a New XBlock

When you create a new XBlock, the count field is added to the Python file
by default. This field is for demonstration purposes and you should replace it
with your own field definitions.

XBlock Methods

You use XBlock methods in the XBlock Python file to define the behavior of your
XBlock.

	View Methods

	Handler Methods

	Default Methods in a New XBlock

View Methods

XBlock view methods are Python methods invoked by the XBlock runtime to render
the XBlock.

An XBlock can have multiple view methods. For example, an XBlock might have a
student view for rendering the XBlock for learners, and an editing view for
rendering the XBlock to course staff.

Note

The XBlock view names are specified by runtime applications; you cannot use
arbitrary view names.

For information about the view requirements in the edX Platform, see Open edX
LMS and
Open edX Studio.

Typically, you define a view to produce a fragment that is used to render the
XBlock as part of a web page. Fragments are aggregated hierarchically. You can
use any field to affect the rendering of the XBlock as needed.

In the following example, the Thumbs sample XBlock in the XBlock SDK defines a
student view.

def student_view(self, context=None): # pylint: disable=W0613
 """
 Create a fragment used to display the XBlock to a student.
 `context` is a dictionary used to configure the display (unused)

 Returns a `Fragment` object specifying the HTML, CSS, and JavaScript
 to display.
 """

 # Load the HTML fragment from within the package and fill in the template

 html_str = pkg_resources.resource_string(
 __name__,
 "static/html/thumbs.html".decode('utf-8')
)
 frag = Fragment(str(html_str).format(block=self))

 # Load the CSS and JavaScript fragments from within the package
 css_str = pkg_resources.resource_string(
 __name__,
 "static/css/thumbs.css".decode('utf-8')
)
 frag.add_css(str(css_str))

 js_str = pkg_resources.resource_string(
 __name__,
 "static/js/src/thumbs.js".decode('utf-8')
)
 frag.add_javascript(str(js_str))

 frag.initialize_js('ThumbsBlock')
 return frag

Although view methods typically produce HTML-based renderings, they can be used
for other purposes. See the documentation for your runtime application to
verify the type of data the view must return and how it will be used.

Handler Methods

You write handlers to implement the server side of your XBlock’s interactive
features.

XBlock handlers are Python methods invoked by AJAX calls from the user’s
browser. Handlers accept an HTTP request and return an HTTP response.

An XBlock can have any number of handlers. For example, a problem XBlock
might contain submit and show_answer handlers.

Each handler has a specific name of your choosing that is mapped to from
specific URLs by the runtime. The runtime provides a mapping from handler names
to specific URLs so that the XBlock JavaScript code can make requests to its
handlers. Handlers can be used with GET and POST requests.

Handler methods also emit events for learner interactions and grades. For more
information, see When an XBlock Should Emit Events.

In the following example, the Thumbs sample XBlock in the XBlock SDK defines a
handler for voting.

def vote(self, data, suffix=''): # pylint: disable=unused-argument
 """
 Update the vote count in response to a user action.
 """
 # Here is where we would prevent a student from voting twice, but then
 # we couldn't click more than once in the demo!
 #
 # if self.voted:
 # log.error("cheater!")
 # return

 if data['voteType'] not in ('up', 'down'):
 log.error('error!')
 return

 if data['voteType'] == 'up':
 self.upvotes += 1
 else:
 self.downvotes += 1

 self.voted = True

 return {'up': self.upvotes, 'down': self.downvotes}

Default Methods in a New XBlock

When you create a new XBlock, two methods are added automatically.

	The view method student_view.

You can modify the contents of this view, but to use your XBlock with the edX
Platform, you must keep the method name student_view.

	The handler method increment_count.

This method is for demonstration purposes and you can remove it.

XBlock Fragments

A fragment is a part of a web page returned by an XBlock view method.

	Fragment Contents

	Fragments and XBlock Children

	Fragments and Views

Fragment Contents

A fragment typically contains all the resources needed to display the XBlock in
a web page, including HTML content, JavaScript, and CSS resources.

HTML Content

Content in a fragment is typically HTML, though some runtimes might require
views that return other mime-types. Each fragment has only a single content
value.

JavaScript

A fragment contains the JavaScript resources necessary to run the XBlock.
JavaScript resources can include both external files to link to, and inline
source code.

When fragments are composed, external JavaScript links are made unique, so
that files are not loaded multiple times.

JavaScript Initializer

The JavaScript specified for a fragment can also specify a function to be
called when that fragment is rendered on the page.

The DOM element containing all of the content in the fragment is passed to this
function, which then executes any code needed to make that fragment
operational.

The JavaScript view is also passed a JavaScript runtime object that contains
a set of functions to generate links back to the XBlock’s handlers and views
on the runtime server.

For example, see the code in the Thumbs XBlock, in the file
xblock_development/xblock-
sdk/sample_xblocks/thumbs/static/js/source/thumbs.js.

function ThumbsAside(runtime, element, block_element, init_args) {
 return new ThumbsBlock(runtime, element, init_args);
}

function ThumbsBlock(runtime, element, init_args) {
 function updateVotes(votes) {
 $('.upvote .count', element).text(votes.up);
 $('.downvote .count', element).text(votes.down);
 }

 var handlerUrl = runtime.handlerUrl(element, 'vote');

 $('.upvote', element).click(function(eventObject) {
 $.ajax({
 type: "POST",
 url: handlerUrl,
 data: JSON.stringify({voteType: 'up'}),
 success: updateVotes
 });
 });

 $('.downvote', element).click(function(eventObject) {
 $.ajax({
 type: "POST",
 url: handlerUrl,
 data: JSON.stringify({voteType: 'down'}),
 success: updateVotes
 });
 });
 return {};
};

CSS

A fragment contains CSS resources to control how the XBlock is displayed. CSS
resources can include both external files to link to and inline source code.

When fragments are composed, external JavaScript links will are made unique, so
that files are not loaded multiple times.

Fragments and XBlock Children

Because XBlocks are nested hierarchically, a single XBlock view might require
collecting renderings from each of its children, then composing them together.
The parent XBlock view must handle composing its children’s content together
to create the parent content.

The fragment system has utilities for composing children’s resources together
into the parent.

Fragments and Views

You configure fragments in XBlock view methods.

In the following example, the Thumbs sample XBlock in the XBlock SDK defines a
student view that composes and returns a fragment with HTML, JavaScript, and
CSS strings generated from the XBlock’s static files.

def student_view(self, context=None): # pylint: disable=W0613
 """
 Create a fragment used to display the XBlock to a student.
 `context` is a dictionary used to configure the display (unused)

 Returns a `Fragment` object specifying the HTML, CSS, and JavaScript
 to display.
 """

 # Load the HTML fragment from within the package and fill in the template

 html_str = pkg_resources.resource_string(
 __name__,
 "static/html/thumbs.html".decode('utf-8')
)
 frag = Fragment(str(html_str).format(block=self))

 # Load the CSS and JavaScript fragments from within the package
 css_str = pkg_resources.resource_string(
 __name__,
 "static/css/thumbs.css".decode('utf-8')
)
 frag.add_css(str(css_str))

 js_str = pkg_resources.resource_string(
 __name__,
 "static/js/src/thumbs.js".decode('utf-8')
)
 frag.add_javascript(str(js_str))

 frag.initialize_js('ThumbsBlock')
 return frag

XBlock Children

An XBlock can have child XBlocks.

	XBlock Tree Structure

	Accessing Children (Server-Side)

	Accessing Children (Client-Side)

XBlock Tree Structure

An XBlock does not refer directly to its children. Instead, the structure of a
tree of XBlocks is maintained by the runtime application, and is made available
to the XBlock through a runtime service. For more information, see XBlock Runtimes.

This allows the runtime to store, access, and modify the structure of a course
without incurring the overhead of the XBlock code itself.

XBlock children are not implicitly available to their parents. The runtime
provides the parent XBlock with a list of child XBlock IDs. The child XBlock
can then be loaded with the get_child() function. Therefore the runtime can
defer loading child XBlocks until they are actually required.

Accessing Children (Server-Side)

To access XBlock children through the server, use the following methods.

	To iterate over the XBlock’s children, use self.get_children which
returns the IDs for each child XBlock.

	Then, to access a child XBlock, use self.get_child(usage_id) for
your desired ID. You can then modify the child XBlock using its .save()
method.

	To render a given child XBlock, use self.runtime.render_child(usage_id).

	To render all children for a given XBlock, use
self.runtime.render_children().

	To ensure the XBlock children are rendered correctly, add the
fragment.content into the parent XBlock’s HTML file, then use
fragment.add_frag_resources() (or .add_frags_resources(), to render
all children). This ensures that the JavaScript and CSS of child elements are
included.

Accessing Children (Client-Side)

To access XBlock children through the client, with JavaScript, use the
following methods.

	Use runtime.children(element), where element is the DOM node that
contains the HTML representation of your XBlock’s server-side view.
(runtime is automatically provided by the XBlock runtime.)

	Similarly, you can use runtime.childMap(element, name) to get a child
element that has a specific name.

XBlock Runtimes

An XBlock runtime is the application that hosts XBlock. For example, the XBlock
SDK, the Open edX LMS,
and Open edX Studio are all XBlock runtime
applications. You can also render an individual XBlock in HTML with the XBlock
URL.

	Runtime Functions

	Extending XBlocks

	JavaScript Runtimes

	XBlock Runtime API

	Rendering XBlocks with the XBlock URL

Runtime Functions

An XBlock runtime application performs the following functions.

	Instantiate XBlocks with the correct data access.

	Display the HTML returned by XBlock views.

Note

Runtime applications document the view names they require of XBlocks.

	Bind the front-end JavaScript code to the correct DOM elements.

	Route handler requests from the client-side XBlock to the server-side
handlers.

Extending XBlocks

A runtime application can have mixin classes that it combines with your XBlock
class. Therefore, your instances of your XBlock might be subclasses of your
original XBlock class.

By using mixins, a runtime application can add field data and methods to all
XBlocks that it hosts, without requiring that XBlocks themselves are aware of
the runtime they are being hosted in.

JavaScript Runtimes

The application that runs XBlocks uses a JavaScript runtime to load XBlocks.
Specifically, the JavaScript runtime provides the following functions to
XBlocks.

	The Runtime Handler

	XBlock Children

	A map of the XBlock children

The XBlock SDK JavaScript Runtime

The file 1.js [https://github.com/openedx/xblock-sdk/blob/master/workbench/static/workbench/js/runtime/1.js] in the XBlock SDK provides the JavaScript runtime for the
workbench.

 // XBlock runtime implementation.

 var RuntimeProvider = (function() {

 var getRuntime = function(version) {
 if (! this.versions.hasOwnProperty(version)) {
 throw 'Unsupported XBlock version: ' + version;
 }
 return this.versions[version];
 };

 var versions = {
 1: {
 handlerUrl: function(block, handlerName, suffix, query) {
 suffix = typeof suffix !== 'undefined' ? suffix : '';
 query = typeof query !== 'undefined' ? query : '';
 var usage = $(block).data('usage');
 var url_selector = $(block).data('url_selector');
 if (url_selector !== undefined) {
 baseUrl = window[url_selector];
 }
 else {baseUrl = handlerBaseUrl;}

 // studentId and handlerBaseUrl are both defined in block.html
 return (baseUrl + usage +
 "/" + handlerName +
 "/" + suffix +
 "?student=" + studentId +
 "&" + query);
 },
 children: function(block) {
 return $(block).prop('xblock_children');
 },
 childMap: function(block, childName) {
 var children = this.children(block);
 for (var i = 0; i < children.length; i++) {
 var child = children[i];
 if (child.name == childName) {
 return child
 }
 }
 }
 }
 };

 return {
 getRuntime: getRuntime,
 versions: versions
 };
}());

var XBlock = (function () {

 var initializeBlock = function (element) {
 $(element).prop('xblock_children', initializeBlocks($(element)));

 var version = $(element).data('runtime-version');
 if (version === undefined) {
 return null;
 }

 var runtime = RuntimeProvider.getRuntime(version);
 var initFn = window[$(element).data('init')];
 var jsBlock;
 if(initFn.length == 2) {
 jsBlock = new initFn(runtime, element) || {};
 } else if (initFn.length == 3) {
 var data = $(".xblock_json_init_args", element).text();
 if (data) data = JSON.parse(data); else data = {};
 jsBlock = new initFn(runtime, element, data) || {};
 }

 jsBlock.element = element;
 jsBlock.name = $(element).data('name');
 return jsBlock;
 };

 var initializeBlocks = function (element) {
 return $(element).immediateDescendents('.xblock-v1').map(function(idx, elem) {
 return initializeBlock(elem);
 }).toArray();
 };

 return {
 initializeBlocks: initializeBlocks
 };
}());

var XBlockAsides = (function () {

 var initializeAside = function (element) {
 var version = $(element).data('runtime-version');
 if (version === undefined) {
 return null;
 }

 var runtime = RuntimeProvider.getRuntime(version);
 var initFn = window[$(element).data('init')];
 var jsBlock;
 // $(element).siblings('div.xblock-v1')[0]
 var block_element = $(element).siblings('[data-usage="'+$(element).data('block_id')+'"]')
 var data = $(".xblock_json_init_args", element).text();
 if (data) data = JSON.parse(data); else data = {};
 jsBlock = new initFn(runtime, element, block_element, data) || {};

 jsBlock.element = element;
 return jsBlock;
 };

 var initializeAsides = function (elements) {
 return elements.map(function(idx, elem) {
 return initializeAside(elem);
 }).toArray();
 };

 return {
 initializeAsides: initializeAsides
 };
}());

$(function() {
 // Find all the children of an element that match the selector, but only
 // the first instance found down any path. For example, we'll find all
 // the ".xblock" elements below us, but not the ones that are themselves
 // contained somewhere inside ".xblock" elements.
 $.fn.immediateDescendents = function(selector) {
 return this.children().map(function(idx, element) {
 if ($(element).is(selector)) {
 return element;
 } else {
 return $(element).immediateDescendents(selector).toArray();
 }
 });
 };

 $('body').on('ajaxSend', function(elm, xhr, s) {
 // Pass along the Django-specific CSRF token.
 xhr.setRequestHeader('X-CSRFToken', $.cookie('csrftoken'));
 });

 XBlock.initializeBlocks($('body'));
 XBlockAsides.initializeAsides($('.xblock_asides-v1'))
});

The JavaScript Runtime Handler

The JavaScript runtime initializes the XBlock each time it is loaded by a user
and returns the handler so the XBlock can communicate with the server.

From the example above, the following part of the runtime generates and returns
the handler to the XBlock.

var versions = {
 1: {
 handlerUrl: function(block, handlerName, suffix, query) {
 suffix = typeof suffix !== 'undefined' ? suffix : '';
 query = typeof query !== 'undefined' ? query : '';
 var usage = $(block).data('usage');
 var url_selector = $(block).data('url_selector');
 if (url_selector !== undefined) {
 baseUrl = window[url_selector];
 }
 else {baseUrl = handlerBaseUrl;}

 // studentId and handlerBaseUrl are both defined in block.html
 return (baseUrl + usage +
 "/" + handlerName +
 "/" + suffix +
 "?student=" + studentId +
 "&" + query);
 . . .

The runtime handler code is called by the XBlock’s JavaScript code to get the
XBlock URL.

For example, the Thumbs XBlock [https://github.com/openedx/xblock-sdk/tree/master/sample_xblocks/thumbs] in the XBlock SDK, the thumbs.js [https://github.com/openedx/xblock-sdk/blob/master/sample_xblocks/thumbs/static/js/src/thumbs.js] file gets
the handler from the XBlock runtime.

var handlerUrl = runtime.handlerUrl(element, 'vote');

XBlock Children

The JavaScript runtime also returns the list of child XBlocks to the XBlock.

From the example above, the following part of the runtime returns the list of
children to the XBlock.

. . .

children: function(block) {
 return $(block).prop('xblock_children');
},
. . .

An XBlock uses the children method when it needs to iterate over an ordered
list of its child XBlocks.

XBlock Child Map

The JavaScript runtime also returns the a map of child XBlocks to the running
XBlock.

From the example above, the following part of the runtime generates and returns
the list of children to the XBlock.

. . .

childMap: function(block, childName) {
 var children = this.children(block);
 for (var i = 0; i < children.length; i++) {
 var child = children[i];
 if (child.name == childName) {
 return child
 }
 }
}
. . .

An XBlock uses the childMap function when it needs to access different
child XBlocks to perform different actions on them.

For example, the Problem XBlock [https://github.com/openedx/xblock-sdk/blob/master/sample_xblocks/basic/problem.py] in the XBlock SDK loads JavaScript code that
gets the map of child XBlocks.

function handleCheckResults(results) {
$.each(results.submitResults || {}, function(input, result) {
 callIfExists(runtime.childMap(element, input), 'handleSubmit', result);
 });
$.each(results.checkResults || {}, function(checker, result) {
 callIfExists(runtime.childMap(element, checker), 'handleCheck', result);

XBlock Runtime API

For more information, see XBlock Runtime API [http://edx.readthedocs.io/projects/xblock/en/latest/] in the XBlock API Guide.

Rendering XBlocks with the XBlock URL

The XBlock URL supports HTML rendering of an individual XBlock without the user
interface of the LMS.

To use the XBlock URL and return the HTML rendering of an individual XBlock,
you use the following URL path for an XBlock on an edX site.

https://{host}/xblock/{usage_id}

Finding the usage_id

The usage_id is the unique identifier for the problem, video, text, or
other course content component, or for sequential or vertical course container
component. There are several ways to find the usage_id for an XBlock in the
LMS, including viewing either the staff debug info or the page source. For more
information, see
Finding the Usage ID for Course Content [https://edx.readthedocs.io/projects/edx-partner-course-staff/en/latest/course_features/lti/lti_address_content.html#finding-the-usage-id-for-course-content].

Example XBlock URLs

For example, a video component in the “Creating Video for the edX Platform”
course on the edx.org site has the following URL.

https://courses.edx.org/courses/course-v1:edX+VideoX+1T2016/courseware/ccc7c32c65d342618ac76409254ac238/1a52e689bcec4a9eb9b7da0bf16f682d/

This video component appears as follows in the LMS.

[image: A video component presented in the context of the edX LMS, with navigational options to reach all other course content.]
To construct the XBlock URL for the same video component, you obtain its
usage_id and then use the following URL format.

https://courses.edx.org/xblock/block-v1:edX+VideoX+1T2016+type@video+block@47faf3a03c4f4023b187528c25932e0a

When you use this URL, the video component appears in your browser as follows.

[image: A video component presented without any options for accessing other course content.]
For courses created prior to October 2014, the usage_id begins with
i4x://, as in the following example.

https://courses.edx.org/xblock/i4x://edX/DemoX.1/problem/47bf6dbce8374b789e3ebdefd74db332

XBlocks, Events, and Grading

Events are emitted by the server or the browser to capture information about
interactions with the courseware.

In most cases, your XBlock must emit events.

For example, assigning a grade is a common event.

	When an XBlock Should Emit Events

	Publish Events in Handler Methods

	Publish Grade Events

When an XBlock Should Emit Events

Analysis of events can provide insight about how learners use the XBlock. Using
event data, analysts should be able to reconstruct the state of the XBlock at
any point in time.

Your XBlock should emit an event whenever a significant state change occurs,
and when a grade for the learner’s interaction is assigned. For example, when a
learner submits an answer or otherwise interacts with your XBlock, an event
should record that action.

To assign grades from your XBlock, it must emit a grade event.

Publish Events in Handler Methods

You define handler methods to emit events.

In the handler, you use the XBlock runtime interface publish method
to emit the event. The runtime.publish method causes the runtime
application to save the event data in the application event stream.

The following code shows the runtime.publish method syntax in an XBlock
handler.

self.runtime.publish(self, "event_type",
 { event_dictionary })

Note the following information about the runtime.publish method.

	The event_type uniquely identifies the event in log files.

	The event dictionary contains key-value pairs that define the event.

Publish Grade Events

To assign a grade for a learner’s interaction with the XBlock, the XBlock
handler method must publish a grade event.

A grade event uses the runtime.publish method with specific arguments.

	The event type is grade.

	The event dictionary must contain two entries.

	value: The learner’s score

	max_value: The maximum possible score

The current user’s user_id is implicit in the event dictionary.

..The event dictionary can also contain the user_id entry. If user_id is not specified, the current user’s ID is used.

For example, the following handler code emits a grade for the learner that is
stored in the submission_result variable in an XBlock with the maximum
grade of 1.0.

self.runtime.publish(self, "grade",
 { value: submission_result
 max_value: 1.0 })

Typically, the handler method also returns the calculated grade, so that it can
be displayed to the learner.

has_score Variable

To be graded, in addition to publishing the grade event, the XBlock must also
have a has_score variable set to True.

has_score = True

XBlocks and the edX Platform

	Open edX Studio as an XBlock Runtime
	Studio Requirements for XBlocks

	Open edX Learning Management System as an XBlock Runtime
	LMS Requirements for XBlocks

	Internationalization Support

	Deploy Your XBlock in Devstack
	Prerequisites

	Installing the XBlock

	Enable the XBlock in Your Course

	Add an Instance of the XBlock to a Unit

	Submit Your XBlock to edX

Open edX Studio as an XBlock Runtime

Open edX Studio is the application in the Open edX Platform that instructors use to build
courseware.

Because instructors use Studio to add and configure XBlocks, Studio is
also an XBlock runtime application.

As an XBlock developer, you must understand what XBlock properties Studio
requires.

Studio Requirements for XBlocks

Studio requires XBlocks to have the following properties.

	A view method named studio_view. This is the view
that renders the XBlock in the Studio editor, allowing the instructor to
configure it. In Studio, the instructor accesses this view by selecting
Edit in the component.

	A view method named author_view. This view is used to display the XBlock
in the Studio preview mode.

The author_view method should be as close as possible to the LMS
student_view, but may contain inline editing capabilities.

If you do not define an author_view, the preview mode uses the
student_view. For more information, see Open edX Learning Management System as an XBlock Runtime.

	A class property named non_editable_metadata_fields. This variable
contains a list of the XBlock fields that should not be displayed in the
Studio editor.

Open edX Learning Management System as an XBlock Runtime

The Open edX Learning Management System (LMS) is the application in the Open edX Platform
that learners use to view and interact with courseware.

Because it presents XBlocks to learners and records their interactions, the LMS
is also an XBlock runtime application.

As an XBlock developer, you must understand what XBlock properties the LMS
requires.

	LMS Requirements for XBlocks

	Internationalization Support

LMS Requirements for XBlocks

The LMS requires XBlocks to have the following properties.

	A view method named student_view. This is the view that renders
the XBlock in the LMS for learners to see and interact with.

In addition, the student_view method is used to render the XBlock in the
Studio preview mode, unless the XBlock also has an author_view method.
For more information, see Open edX Studio as an XBlock Runtime.

	A class property named has_score with a value of True if the XBlock
is to be graded.

	A class property named icon_class, which controls the icon that displays
to learners in the unit navigation bar on the Course page when the XBlock
is in that unit. The variable must have one of the following values.

	Value

	Icon

	problem

	[image: The icon for an assessment of any type.]

	video

	[image: The icon for a video.]

	other

	[image: The icon for any other type of course content.]

Internationalization Support

The LMS is currently capable of supporting internationalization (i18n) and localization (l10n) of static UI text
included in your XBlock – also known as “chrome” or “labels”. Translation of user-generated content stored as XBlock
state is not currently supported.

To present XBlock language translations in the LMS you must include the translated strings for your chosen “locale”
in the GNU Gettext Portable Object file format. Translated strings must be stored in a “domain” file named “text.po”.

	locale: A set of parameters that defines the user’s language, region and any special variant preferences that the
user wants to see in their user interface

	domain: A Gettext application representing the set of translated strings corresponding to a particular locale.

Each “text.po” domain file consists of one or more string/translation pairs for the language/locale. Further, each
translation pair consists of two fields: “msgid” for the base string, and “msgstr” for its corresponding translation.

There is no limit on the number of locales/domains that can be included with your XBlock. However, your specific Open
edX installation may not be configured to support every locale that you provide.

You can learn more about the GNU Gettext Portable Object file format and download the GNU Gettext software using the
following resources:

	https://www.gnu.org/software/gettext/

	https://en.wikipedia.org/wiki/Gettext

	https://www.drupal.org/node/1814954

In addition to GNU Gettext, it is also possible to utilize the Open edX “i18n-tools” GNU Gettext wrapper to work with
your XBlock locales and domains. You will need to modify the i18n-tools YAML configuration file to work with your
XBlock project. More information about the i18n-tools project and its configuration file can be found at:

	https://github.com/openedx/i18n-tools

	https://github.com/openedx/i18n-tools/blob/master/conf/locale/config.yaml

Adding Translated Strings to your XBlock

	Create a directory within your XBlock code project named “translations”. This directory should be located at the
same level in your code project as your XBlock implementation file. For example:

	http://github.com/my_org/my_xblock/my_xblock/my_xblock.py

	http://github.com/my_org/my_xblock/my_xblock/translations/

	Create a set of language directories for each of your locales within this new “translations” directory. You may
specify either a general language code or a specific language locale code for the name of each directory. Include
an “LC_MESSAGES” directory with each language directory.

	../my_xblock/translations/ar/LC_MESSAGES/

	../my_xblock/translations/es-es/LC_MESSAGES/

	Create a domain file named “text.po”. You can use the Gettext xgettext command directly, or another tool
of your choosing, such as Django’s makemessages utility, or i18n-tools. For more information on how to use
these tools, see the following resources.

	Gettext: https://www.gnu.org/software/gettext/manual/gettext.html

	Gettext: http://phptal.org/manual/en/split/gettext.html

	Django: https://docs.djangoproject.com/en/dev/topics/i18n/translation/#localization-how-to-create-language-files

	i18n-tools: https://github.com/openedx/i18n-tools

	Repeat the domain file creation process for each language/locale you support.

In the following example, we will use the i18n-tools utilites to generate a “text.po” file.

	Create an alternative configuration file containing the details for your particular XBlock project

	Run i18n_tool extract to automatically find strings and populate the PO file.

	Run i18n_tool generate to compile your human-readable PO file to a machine-readable “MO” binary file

	Repeat the extraction/generation process for as many languages/locales as you require for your XBlock

	Add all of your translation directories and PO/MO files to your XBlock code project for distribution

	Open each “text.po” domain file and, for each “msgid” string, add a corresponding “msgstr” translation. PO files
can be edited by hand, with a tool such as Pedit or Emacs, or through a third party service such as Transifex.

	Place each locale’s “text.po” domain file within the corresponding “LC_MESSAGES” directory.

	../my_xblock/translations/ar/LC_MESSAGES/text.po

	../my_xblock/translations/es-es/LC_MESSAGES/text.po

	Compile your “text.po” files into binary “text.mo” files using the Gettext msgfmt command (or via the tool of
your choice), and include these “text.mo” files alongside your “text.po” files in your code project.

	../my_xblock/translations/ar/LC_MESSAGES/text.mo

	../my_xblock/translations/ar/LC_MESSAGES/text.po

The resulting directory/file structure should look like this.

/my_xblock
├── my_xblock.py
└── translations
 ├── ar
 | └── LC_MESSAGES
 | ├── text.mo
 | └── text.po
 ├── es-es
 | └── LC_MESSAGES
 | ├── text.mo
 | └── text.po
 ├── ru
 | └── LC_MESSAGES
 | ├── text.mo
 | └── text.po
 └── zh-cn
 └── LC_MESSAGES
 ├── text.mo
 └── text.po

You can now run the LMS and update your preferred language via Account Settings
in order to observe the translated strings for your chosen locale.

Note

In the absence of an available language locale and domain file, the
LMS XBlock runtime will attempt to match strings marked for translation
within your XBlock using its own set of language locales and domains.
However, it is not recommended that you rely on the LMS mechanism for
internationalization support. There is no guarantee your strings will be
matched by the LMS, and even if matches are found, the translations may be
incorrect in the context of your specific XBlock.

Deploy Your XBlock in Devstack

This section provides instructions for deploying your XBlock in devstack.

	Prerequisites

	Installing the XBlock

	Enable the XBlock in Your Course

	Add an Instance of the XBlock to a Unit

For more information about devstack, see the Installing,
Configuring, and Running the Open edX Platform [https://edx.readthedocs.io/projects/edx-installing-configuring-and-running/en/latest/index.html].

Prerequisites

Before proceeding with the steps to deploy your XBlock, ensure the following
requirements are met.

	Devstack is running. For instructions, see the devstack [https://github.com/openedx/devstack] repository.

	Ensure you have the XBlock directory in a location you can access from the
devstack containers (e.g. edx-platform/src/`).

Installing the XBlock

The following instructions will help you install a XBlock on your OpenEdX
devstack. Since LMS and Studio run on separate Docker containers, you will need
to install the XBlock to the virtual environments of both containers.

Note

These steps consider you’re running the Docker based Devstack provisioned at
~/devstack_workspace/.

	From your devstack folder (~/devstack_workspace/devstack), enter the LMS container shell:

$ make lms-shell

	Install the XBlock on edx-platform virtual enviroment:

root@7beb9df53150:/edx/app/edxapp/edx-platform# pip install path/to/xblock

	Use C-d to exit the LMS shell and enter Studio shell with:

$ make studio-shell

	Install the XBlock in the same way you’ve installed it on LMS:

root@7beb9df53150:/edx/app/edxapp/edx-platform# pip install path/to/xblock

	To make sure the XBlock is available, you will need to restart both LMS and Studio:

$ make lms-restart && make studio-restart

After this, you’ll be able to enable and add the XBlock to your course.

Enable the XBlock in Your Course

To use a XBlock, you must enable it in each course in which you intend to use it.

	Log in to Studio.

	Open the course.

	From the Settings menu, select Advanced Settings.

	In the Advanced Module List field, place your cursor between the braces,
and then type the exact name of the XBlock.

Note

The name you enter must match exactly the name specified in your XBlock’s
setup.py file.

If you see other values in the Advanced Module List field, add a comma
after the closing quotation mark for the last value, and then type the name
of your XBlock.

	At the bottom of the page, select Save Changes.

Add an Instance of the XBlock to a Unit

You can add instances of the XBlock in any unit in the course.

On the unit page, under Add New Component, select Advanced.

Your XBlock is listed as one of the types you can add.

Select the name of your XBlock to add an instance to the unit.

You can then edit the properties of the instance as needed by selecting the
Edit button.

For more information about working with components in Studio, see
Developing Course Components [https://edx.readthedocs.io/projects/edx-partner-course-staff/en/latest/developing_course/course_components.html] in the Building and
Running an Open edX guide.

Submit Your XBlock to edX

Many developers and institutions submit the XBlocks they develop to edX, to
benefit course teams and learners who create and take classes on
edx.org [http://edx.org].

Note that you are not required to submit your XBlock to edX. You and other edX service providers can run your XBlock without involving edX.

To submit your XBlock to edx.org, complete the following steps.

	Upload the XBlock to a repository on GitHub.

	Create a new branch in the edx-platform [https://github.com/openedx/edx-platform] GitHub repository.

	In your branch, add a line to the requirements/edx/github.txt [https://github.com/openedx/edx-platform/blob/master/requirements/edx/github.txt] file that
indicates the version of your XBlock to use.

Note

The requirements file addition is the only change you should make in your
branch. Do not include the code for your XBlock in the pull request.

	Create a pull request for your branch in the edx-platform GitHub repository.

	Add a thorough description of your XBlock and its intended use to the pull
request. You must include instructions to manually test that the XBlock is
working properly.

	Add a link to your XBlock repository in the pull request.

After you submit the pull request, edX will review your XBlock to ensure that
it is appropriate for use on edx.org. Specifically, edX will review your XBlock
for security, scalability, accessibility, and fitness of purpose. You should be
prepared to respond to questions and comments from edX in your pull request.

Open edX Glossary

Glossary [https://docs.openedx.org/en/latest/developers/references/glossary.html]

Using XBlock Software Development Kit

The XBlock SDK is a Python application you use to help you build new XBlocks.
The XBlock SDK contains three main components:

	An XBlock creation tool that builds the skeleton of a new XBlock.

	An XBlock runtime for viewing and testing your XBlocks during development.

	Sample XBlocks that you can use as the starting point for new XBlocks, and
for your own learning.

In Build an XBlock: Quick Start, you set up the XBlock Software
Development Kit (SDK). You had to
do this to create your first XBlock.

While covering some of the same topics, this part of the tutorial is included
as a later reference for using the XBlock SDK.

	Getting Started with the XBlock SDK
	Clone the XBlock Software Development Kit

	Create an XBlock

	Install the XBlock

	Create the SQLite Database

	Run the XBlock SDK Server

Getting Started with the XBlock SDK

This section describes how to get started with the XBlock SDK.

	Clone the XBlock Software Development Kit

	Create an XBlock

	Install the XBlock

	Create the SQLite Database

	Run the XBlock SDK Server

Clone the XBlock Software Development Kit

The XBlock SDK is a Python application you use to help you build new XBlocks.
The XBlock SDK contains three main components:

	An XBlock creation tool that builds the skeleton of a new XBlock.

	An XBlock runtime for viewing and testing your XBlocks during development.

	Sample XBlocks that you can use as the starting point for new XBlocks, and
for your own learning.

After you create and activate the virtual environment, you clone the XBlock SDK [https://github.com/openedx/xblock-sdk] and install its
requirements. To do this, complete the following steps at a command prompt.

	In the xblock_development directory, run the following command to clone
the XBlock SDK repository from GitHub.

(xblock-env) $ git clone https://github.com/openedx/xblock-sdk.git

	In the same directory, create an empty directory called var.

(xblock-env) $ mkdir var

	Run the following command to change to the xblock-sdk directory.

(xblock-env) $ cd xblock-sdk

	Run the following commands to install the XBlock SDK requirements.

(xblock-env) $ make install

	Run the following command to return to the xblock_development directory,
where you will perform the rest of your work.

(xblock-env) $ cd ..

Create an XBlock

You use the XBlock SDK to create skeleton files for an XBlock. To do this,
follow these steps at a command prompt.

	Change to the xblock_development directory, which contains the
var, xblock-env, and xblock-sdk subdirectories.

	Run the following command to create the skeleton
files for the XBlock.

(xblock-env) $ xblock-sdk/bin/workbench-make-xblock

Instructions in the command window instruct you to determine a short name
and a class name. Follow the guidelines in the command window to determine
the names that you want to use.

You will be prompted for two pieces of information:

* Short name: a single word, all lower-case, for directory and file
 names. For a hologram 3-D XBlock, you might choose "holo3d".

* Class name: a valid Python class name. It's best if this ends with
 "XBlock", so for our hologram XBlock, you might choose
 "Hologram3dXBlock".

Once you specify those two names, a directory is created in the
``xblock_development`` directory containing the new project.

If you don't want to create the project here, or you enter a name
incorrectly, type Ctrl-C to stop the creation script. If you don't want
the resulting project, delete the directory it created.

	At the command prompt, enter the Short Name you selected for your XBlock.

$ Short name: myxblock

	At the command prompt, enter the Class name you selected for your XBlock.

$ Class name: MyXBlock

The skeleton files for the XBlock are created in the myxblock directory.
For more information about the XBlock files, see
Anatomy of an XBlock.

Install the XBlock

After you create the XBlock, you install it in the XBlock SDK.

In the xblock_development directory, use pip to install your XBlock.

(xblock-env) $ pip install -e myxblock

You can then test your XBlock in the XBlock SDK.

Create the SQLite Database

Before running the XBlock SDK the first time, you must create the SQLite
database.

	In the xblock_development directory, run the following command to create
the database and the tables.

(xblock-env) $ python xblock-sdk/manage.py migrate

Run the XBlock SDK Server

To see the web interface of the XBlock SDK, you must run the SDK server.

In the xblock_development directory, run the following command to start the
server.

(xblock-env) $ python xblock-sdk/manage.py runserver

Note

If you do not specify a port, the XBlock SDK server uses port 8000.
To use a different port, specify it in the runserver command.

Then test that the XBlock SDK is running. In a browser, go to
http://localhost:8000. You should see the following page.

[image: The XBlock SDK home page.]
The page shows the XBlocks installed automatically with the XBlock SDK. Note
that the page also shows the MyXBlock XBlock that you created in
Create Your First XBlock.

Get Help for the XBlock SDK Server

To get help for the XBlock SDK runserver command, run the following
command.

(xblock-env) $ python xblock-sdk/manage.py help

The command window lists and describes the available commands.

Xblock.utils

Package having various utilities for XBlocks

Purpose

xblock/utils package contains a collection of utility functions and base test classes that are useful for any XBlock.

Documentation

StudioEditableXBlockMixin

from xblock.utils.studio_editable import StudioEditableXBlockMixin

This mixin will automatically generate a working studio_view form
that allows content authors to edit the fields of your XBlock. To use,
simply add the class to your base class list, and add a new class field
called editable_fields, set to a tuple of the names of the fields
you want your user to be able to edit.

@XBlock.needs("i18n")
class ExampleBlock(StudioEditableXBlockMixin, XBlock):
 ...
 mode = String(
 display_name="Mode",
 help="Determines the behaviour of this component. Standard is recommended.",
 default='standard',
 scope=Scope.content,
 values=('standard', 'crazy')
)
 editable_fields = ('mode', 'display_name')

That’s all you need to do. The mixin will read the optional
display_name, help, default, and values settings from
the fields you mention and build the editor form as well as an AJAX save
handler.

If you want to validate the data, you can override
validate_field_data(self, validation, data) and/or
clean_studio_edits(self, data) - see the source code for details.

Supported field types:

	Boolean:
field_name = Boolean(display_name="Field Name")

	Float:
field_name = Float(display_name="Field Name")

	Integer:
field_name = Integer(display_name="Field Name")

	String:
field_name = String(display_name="Field Name")

	String (multiline):
field_name = String(multiline_editor=True, resettable_editor=False)

	String (html):
field_name = String(multiline_editor='html', resettable_editor=False)

Any of the above will use a dropdown menu if they have a pre-defined
list of possible values.

	List of unordered unique values (i.e. sets) drawn from a small set of
possible values:
field_name = List(list_style='set', list_values_provider=some_method)

	The List declaration must include the property list_style='set' to
indicate that the List field is being used with set semantics.

	The List declaration must also define a list_values_provider method
which will be called with the block as its only parameter and which must
return a list of possible values.

	Rudimentary support for Dict, ordered List, and any other JSONField-derived field types

	list_field = List(display_name="Ordered List", default=[])

	dict_field = Dict(display_name="Normal Dict", default={})

Supported field options (all field types):

	values can define a list of possible options, changing the UI element
to a select box. Values can be set to any of the formats defined in the
XBlock source code [https://github.com/openedx/XBlock/blob/master/xblock/fields.py]:

	A finite set of elements: [1, 2, 3]

	A finite set of elements where the display names differ from the values:

[
 {"display_name": "Always", "value": "always"},
 {"display_name": "Past Due", "value": "past_due"},
]

	A range for floating point numbers with specific increments:
{"min": 0 , "max": 10, "step": .1}

	A callable that returns one of the above. (Note: the callable does
not get passed the XBlock instance or runtime, so it cannot be a
normal member function)

	values_provider can define a callable that accepts the XBlock
instance as an argument, and returns a list of possible values in one
of the formats listed above.

	resettable_editor - defaults to True. Set False to hide the
“Reset” button used to return a field to its default value by removing
the field’s value from the XBlock instance.

Basic screenshot: [image: Screenshot 1]

StudioContainerXBlockMixin

from xblock.utils.studio_editable import StudioContainerXBlockMixin

This mixin helps to create XBlocks that allow content authors to add,
remove, or reorder child blocks. By removing any existing
author_view and adding this mixin, you’ll get editable,
re-orderable, and deletable child support in Studio. To enable authors to
add arbitrary blocks as children, simply override author_edit_view
and set can_add=True when calling render_children - see the
source code. To restrict authors so they can add only specific types of
child blocks or a limited number of children requires custom HTML.

An example is the mentoring XBlock: [image: Screenshot 2]

child_isinstance

from xblock.utils.helpers import child_isinstance

If your XBlock needs to find children/descendants of a particular
class/mixin, you should use

child_isinstance(self, child_usage_id, SomeXBlockClassOrMixin)

rather than calling

isinstance(self.runtime.get_block(child_usage_id), SomeXBlockClassOrMixin)

On runtimes such as those in edx-platform, child_isinstance is
orders of magnitude faster.

XBlockWithSettingsMixin

This mixin provides access to instance-wide XBlock-specific configuration settings.
See Accessing XBlock specific settings for details.

ThemableXBlockMixin

This mixin provides XBlock theming capabilities built on top of XBlock-specific settings.
See Theming support for details.

To learn more, refer to the page.

Contents:

	Settings and theme support
	Accessing XBlock specific settings
	Using XBlockWithSettingsMixin

	Theming support
	Using ThemableXBlockMixin

Settings and theme support

Accessing XBlock specific settings

XBlock utils provide a mixin to simplify accessing instance-wide
XBlock-specific configuration settings: XBlockWithSettingsMixin.
This mixin aims to provide a common interface for pulling XBlock
settings from the LMS
SettingsService [https://github.com/edx/edx-platform/blob/master/common/lib/xmodule/xmodule/services.py].

SettingsService allows individual XBlocks to access environment and
django settings in an isolated manner:

	XBlock settings are represented as dictionary stored in django
settings [https://github.com/edx/edx-platform/blob/master/cms/envs/aws.py#L341-342]
and populated from environment *.json files (cms.env.json and
lms.env.json)

	Each XBlock is associated with a particular key in that dictionary:
by default an XBlock’s class name is used, but XBlocks can override
it using the block_settings_key attribute/property.

Please note that at the time of writing the implementation of
SettingsService assumed “good citizenship” behavior on the part of
XBlocks, i.e. it does not check for key collisions and allows modifying
mutable settings. Both SettingsService and
XBlockWithSettingsMixin are not concerned with contents of settings
bucket and return them as is. Refer to the SettingsService docstring
and implementation for more details.

Using XBlockWithSettingsMixin

In order to use SettingsService and XBlockWithSettingsMixin, a
client XBlock must require it via standard
XBlock.wants('settings') or XBlock.needs('settings') decorators.
The mixins themselves are not decorated as this would not result in all
descendant XBlocks to also be decorated.

With XBlockWithSettingsMixin and wants decorator applied,
obtaining XBlock settings is as simple as

self.get_xblock_settings() # returns settings bucket or None
self.get_xblock_settings(default=something) # returns settings bucket or "something"

In case of missing or inaccessible XBlock settings (i.e. no settings
service in runtime, no XBLOCK_SETTINGS in settings, or XBlock
settings key is not found) default value is used.

Theming support

XBlock theming support is built on top of XBlock-specific settings.
XBlock utils provide ThemableXBlockMixin to streamline using XBlock
themes.

XBlock theme support is designed with two major design goals:

	Allow for a different look and feel of an XBlock in different
environments.

	Use a pluggable approach to hosting themes, so that adding a new
theme will not require forking an XBlock.

The first goal made using SettingsService and
XBlockWithSettingsMixin an obvious choice to store and obtain theme
configuration. The second goal dictated the configuration format - it is
a dictionary (or dictionary-like object) with the following keys:

	package - “top-level” selector specifying package which hosts
theme files

	locations - a list of locations within that package

Examples:

will search for files red.css and small.css in my_xblock package
{
 'package': 'my_xblock',
 'locations': ['red.css', 'small.css']
}

will search for files public/themes/red.css in my_other_xblock.assets package
default_theme_config = {
 'package': 'my_other_xblock.assets',
 'locations': ['public/themes/red.css']
}

Theme files must be included into package (see python
docs [https://docs.python.org/2/distutils/setupscript.html#installing-package-data]
for details). At the time of writing it is not possible to fetch theme
files from multiple packages.

Note: XBlock themes are not LMS themes - they are just additional
CSS files included into an XBlock fragment when the corresponding XBlock
is rendered. However, it is possible to misuse this feature to change
look and feel of the entire LMS, as contents of CSS files are not
checked and might contain selectors that apply to elements outside of
the XBlock in question. Hence, it is advised to scope all CSS rules
belonging to a theme with a global CSS selector
.themed-xblock.<root xblock element class>, e.g.
.themed-xblock.poll-block. Note that the themed-xblock class is
not automatically added by ThemableXBlockMixin, so one needs to add
it manually.

Using ThemableXBlockMixin

In order to use ThemableXBlockMixin, a descendant XBlock must also
be a descendant of XBlockWithSettingsMixin (XBlock.wants
decorator requirement applies) or provide a similar interface for
obtaining the XBlock settings bucket.

There are three configuration parameters that govern
ThemableXBlockMixin behavior:

	default_theme_config - default theme configuration in case no
theme configuration can be obtained

	theme_key - a key in XBlock settings bucket that stores theme
configuration

	block_settings_key - inherited from XBlockWithSettingsMixin
if used in conjunction with it

It is safe to omit default_theme_config or set it to None in
case no default theme is available. In this case,
ThemableXBlockMixin will skip including theme files if no theme is
specified via settings.

ThemableXBlockMixin exposes two methods:

	get_theme() - this is used to get theme configuration. Default
implementation uses get_xblock_settings and theme_key,
descendants are free to override it. Normally, it should not be
called directly.

	include_theme_files(fragment) - this method is an entry point to
ThemableXBlockMixin functionality. It calls get_theme to
obtain theme configuration, fetches theme files and includes them
into fragment. fragment must be a
web_fragments.fragment [https://github.com/openedx/web-fragments/blob/master/web_fragments/fragment.py]
instance.

So, having met usage requirements and set up theme configuration
parameters, including theme into XBlock fragment is a one liner:

self.include_theme_files(fragment)

 Python Module Index

 x

 		 	

 		
 x	

 	[image: -]
 	
 xblock	

 	
 	
 xblock.exceptions	

 	
 	
 xblock.fields	

 	
 	
 xblock.runtime	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	
 	add_block_as_child_node() (xblock.runtime.Runtime method)

 	add_children_to_node() (xblock.core.XBlock method)

 	add_node_as_child() (xblock.runtime.Runtime method)

 	add_xml_to_node() (xblock.core.XBlock method)

 	(xblock.core.XBlockAside method)

 	
 	applicable_aside_types() (xblock.runtime.Runtime method)

 	ASIDE_DEFINITION_ID (xblock.runtime.MemoryIdManager attribute)

 	aside_for() (xblock.core.XBlockAside class method)

 	ASIDE_USAGE_ID (xblock.runtime.MemoryIdManager attribute)

 	aside_view_declaration() (xblock.core.XBlockAside method)

B

 	
 	BlockScope (class in xblock.fields)

 	
 	Boolean (class in xblock.fields)

C

 	
 	clear() (xblock.runtime.MemoryIdManager method)

 	clear_child_cache() (xblock.core.XBlock method)

 	construct_xblock() (xblock.runtime.Runtime method)

 	construct_xblock_from_class() (xblock.runtime.Runtime method)

 	context_key (xblock.core.XBlock property)

 	(xblock.core.XBlockAside property)

 	
 	create_aside() (xblock.runtime.IdGenerator method)

 	(xblock.runtime.MemoryIdManager method)

 	(xblock.runtime.Runtime method)

 	create_definition() (xblock.runtime.IdGenerator method)

 	(xblock.runtime.MemoryIdManager method)

 	create_usage() (xblock.runtime.IdGenerator method)

 	(xblock.runtime.MemoryIdManager method)

D

 	
 	DbModel (in module xblock.runtime)

 	default (xblock.fields.Field property)

 	default() (xblock.field_data.FieldData method)

 	(xblock.runtime.KeyValueStore method)

 	(xblock.runtime.KvsFieldData method)

 	delete() (xblock.field_data.FieldData method)

 	(xblock.runtime.DictKeyValueStore method)

 	(xblock.runtime.KeyValueStore method)

 	(xblock.runtime.KvsFieldData method)

 	
 	delete_from() (xblock.fields.Field method)

 	Dict (class in xblock.fields)

 	DictKeyValueStore (class in xblock.runtime)

 	DisallowedFileError

 	display_name (xblock.fields.Field property)

E

 	
 	enforce_type() (xblock.fields.Boolean method)

 	(xblock.fields.Dict method)

 	(xblock.fields.Field method)

 	(xblock.fields.Float method)

 	(xblock.fields.Integer method)

 	(xblock.fields.List method)

 	(xblock.fields.Set method)

 	(xblock.fields.String method)

 	(xblock.fields.XMLString method)

 	
 	export_to_xml() (xblock.runtime.Runtime method)

F

 	
 	Field (class in xblock.fields)

 	field_data (xblock.runtime.Runtime property)

 	FieldData (class in xblock.field_data)

 	FieldDataDeprecationWarning

 	Filesystem (class in xblock.reference.plugins)

 	Float (class in xblock.fields)

 	force_save_fields() (xblock.core.XBlock method)

 	(xblock.core.XBlockAside method)

 	from_json() (xblock.fields.Boolean method)

 	(xblock.fields.Dict method)

 	(xblock.fields.Field method)

 	(xblock.fields.Float method)

 	(xblock.fields.Integer method)

 	(xblock.fields.List method)

 	(xblock.fields.Set method)

 	(xblock.fields.String method)

 	
 	from_string() (xblock.fields.Field method)

 	(xblock.fields.String method)

G

 	
 	get() (xblock.field_data.FieldData method)

 	(xblock.runtime.DictKeyValueStore method)

 	(xblock.runtime.KeyValueStore method)

 	(xblock.runtime.KvsFieldData method)

 	get_aside() (xblock.runtime.Runtime method)

 	get_aside_of_type() (xblock.runtime.Runtime method)

 	get_aside_type_from_definition() (xblock.runtime.IdReader method)

 	(xblock.runtime.MemoryIdManager method)

 	get_aside_type_from_usage() (xblock.runtime.IdReader method)

 	(xblock.runtime.MemoryIdManager method)

 	get_asides() (xblock.runtime.Runtime method)

 	get_block() (xblock.runtime.Runtime method)

 	get_block_type() (xblock.runtime.IdReader method)

 	(xblock.runtime.MemoryIdManager method)

 	get_child() (xblock.core.XBlock method)

 	
 	get_children() (xblock.core.XBlock method)

 	get_definition_id() (xblock.runtime.IdReader method)

 	(xblock.runtime.MemoryIdManager method)

 	get_definition_id_from_aside() (xblock.runtime.IdReader method)

 	(xblock.runtime.MemoryIdManager method)

 	get_i18n_js_namespace() (xblock.core.XBlock class method)

 	(xblock.core.XBlockAside class method)

 	get_javascript_i18n_catalog_url() (xblock.runtime.NullI18nService method)

 	get_parent() (xblock.core.XBlock method)

 	get_public_dir() (xblock.core.XBlock class method)

 	(xblock.core.XBlockAside class method)

 	get_resources_dir() (xblock.core.XBlock class method)

 	(xblock.core.XBlockAside class method)

 	get_response() (xblock.exceptions.JsonHandlerError method)

 	get_usage_id_from_aside() (xblock.runtime.IdReader method)

 	(xblock.runtime.MemoryIdManager method)

H

 	
 	handle() (xblock.core.XBlock method)

 	(xblock.core.XBlockAside method)

 	(xblock.runtime.Runtime method)

 	handler() (xblock.core.XBlock class method)

 	(xblock.core.XBlockAside class method)

 	handler_url() (xblock.runtime.Runtime method)

 	
 	has() (xblock.field_data.FieldData method)

 	(xblock.runtime.DictKeyValueStore method)

 	(xblock.runtime.KeyValueStore method)

 	(xblock.runtime.KvsFieldData method)

 	has_cached_parent (xblock.core.XBlock property)

 	has_support() (xblock.core.XBlock method)

I

 	
 	IdGenerator (class in xblock.runtime)

 	IdReader (class in xblock.runtime)

 	index_dictionary() (xblock.core.XBlock method)

 	(xblock.core.XBlockAside method)

 	
 	Integer (class in xblock.fields)

 	InvalidScopeError

 	is_set_on() (xblock.fields.Field method)

J

 	
 	json_handler() (xblock.core.XBlock class method)

 	(xblock.core.XBlockAside class method)

 	
 	JsonHandlerError

K

 	
 	KeyValueMultiSaveError

 	KeyValueStore (class in xblock.runtime)

 	
 	KeyValueStore.Key (class in xblock.runtime)

 	KvsFieldData (class in xblock.runtime)

L

 	
 	layout_asides() (xblock.runtime.Runtime method)

 	lex() (xblock.runtime.RegexLexer method)

 	List (class in xblock.fields)

 	load_aside_type() (xblock.runtime.Runtime method)

 	load_block_type() (xblock.runtime.Runtime method)

 	load_class() (xblock.core.XBlock class method)

 	(xblock.core.XBlockAside class method)

 	(xblock.plugin.Plugin class method)

 	
 	load_classes() (xblock.core.XBlock class method)

 	(xblock.core.XBlockAside class method)

 	(xblock.plugin.Plugin class method)

 	load_tagged_classes() (xblock.core.XBlock class method)

 	local_resource_url() (xblock.runtime.Runtime method)

M

 	
 	MemoryIdManager (class in xblock.runtime)

 	mix() (xblock.runtime.Mixologist method)

 	Mixologist (class in xblock.runtime)

 	
 	
 module

 	xblock.exceptions

 	xblock.fields

 	xblock.runtime

N

 	
 	name (xblock.fields.Field property)

 	named_scopes() (xblock.fields.Scope class method)

 	needs() (xblock.core.XBlock class method)

 	(xblock.core.XBlockAside class method)

 	needs_name() (xblock.fields.Field static method)

 	needs_serialization() (xblock.core.XBlockAside method)

 	
 	none_to_xml (xblock.fields.String property)

 	NoSuchDefinition

 	NoSuchHandlerError

 	NoSuchServiceError

 	NoSuchUsage

 	NoSuchViewError

 	NullI18nService (class in xblock.runtime)

O

 	
 	ObjectAggregator (class in xblock.runtime)

 	
 	open_local_resource() (xblock.core.XBlock class method)

 	(xblock.core.XBlockAside class method)

P

 	
 	parse_xml() (xblock.core.XBlock class method)

 	(xblock.core.XBlockAside class method)

 	parse_xml_file() (xblock.runtime.Runtime method)

 	
 	parse_xml_string() (xblock.runtime.Runtime method)

 	Plugin (class in xblock.plugin)

 	publish() (xblock.runtime.Runtime method)

Q

 	
 	query() (xblock.runtime.Runtime method)

 	
 	querypath() (xblock.runtime.Runtime method)

R

 	
 	read_from() (xblock.fields.Field method)

 	read_json() (xblock.fields.Field method)

 	RegexLexer (class in xblock.runtime)

 	register_temp_plugin() (xblock.core.XBlock class method)

 	(xblock.core.XBlockAside class method)

 	(xblock.plugin.Plugin class method)

 	
 	render() (xblock.core.XBlock method)

 	(xblock.runtime.Runtime method)

 	render_asides() (xblock.runtime.Runtime method)

 	render_child() (xblock.runtime.Runtime method)

 	render_children() (xblock.runtime.Runtime method)

 	resource_url() (xblock.runtime.Runtime method)

 	Runtime (class in xblock.runtime)

S

 	
 	save() (xblock.core.XBlock method)

 	(xblock.core.XBlockAside method)

 	save_block() (xblock.runtime.Runtime method)

 	Scope (class in xblock.fields)

 	ScopeIds (class in xblock.fields)

 	scopes() (xblock.fields.BlockScope class method)

 	(xblock.fields.Scope class method)

 	(xblock.fields.UserScope class method)

 	service() (xblock.runtime.Runtime method)

 	service_declaration() (xblock.core.XBlock class method)

 	(xblock.core.XBlockAside class method)

 	Set (class in xblock.fields)

 	
 	set() (xblock.field_data.FieldData method)

 	(xblock.runtime.DictKeyValueStore method)

 	(xblock.runtime.KeyValueStore method)

 	(xblock.runtime.KvsFieldData method)

 	set_many() (xblock.field_data.FieldData method)

 	(xblock.runtime.DictKeyValueStore method)

 	(xblock.runtime.KeyValueStore method)

 	(xblock.runtime.KvsFieldData method)

 	should_apply_to_block() (xblock.core.XBlockAside class method)

 	strftime() (xblock.runtime.NullI18nService method)

 	String (class in xblock.fields)

 	supports() (xblock.core.XBlock class method)

T

 	
 	tag() (xblock.core.XBlock static method)

 	to_json() (xblock.fields.Field method)

 	(xblock.fields.XMLString method)

 	
 	to_string() (xblock.fields.Dict method)

 	(xblock.fields.Field method)

 	(xblock.fields.String method)

U

 	
 	ugettext (xblock.runtime.NullI18nService property)

 	ugettext() (xblock.core.XBlock method)

 	ungettext (xblock.runtime.NullI18nService property)

 	usage_key (xblock.core.XBlock property)

 	(xblock.core.XBlockAside property)

 	
 	user_id (xblock.runtime.Runtime property)

 	UserIdDeprecationWarning

 	UserScope (class in xblock.fields)

V

 	
 	validate() (xblock.core.XBlock method)

 	
 	values (xblock.fields.Field property)

W

 	
 	wants() (xblock.core.XBlock class method)

 	(xblock.core.XBlockAside class method)

 	
 	wrap_aside() (xblock.runtime.Runtime method)

 	wrap_xblock() (xblock.runtime.Runtime method)

 	write_to() (xblock.fields.Field method)

X

 	
 	XBlock (class in xblock.core)

 	
 xblock.exceptions

 	module

 	
 xblock.fields

 	module

 	
 xblock.runtime

 	module

 	XBlockAside (class in xblock.core)

 	
 	XBlockNotFoundError

 	XBlockParseException

 	XBlockSaveError

 	xml_element_name() (xblock.core.XBlock method)

 	(xblock.core.XBlockAside method)

 	xml_text_content() (xblock.core.XBlock method)

 	(xblock.core.XBlockAside method)

 	XMLString (class in xblock.fields)

Clone the XBlock Software Development Kit

The XBlock SDK is a Python application you use to help you build new XBlocks.
The XBlock SDK contains three main components:

	An XBlock creation tool that builds the skeleton of a new XBlock.

	An XBlock runtime for viewing and testing your XBlocks during development.

	Sample XBlocks that you can use as the starting point for new XBlocks, and
for your own learning.

After you create and activate the virtual environment, you clone the XBlock SDK [https://github.com/openedx/xblock-sdk] and install its
requirements. To do this, complete the following steps at a command prompt.

	In the xblock_development directory, run the following command to clone
the XBlock SDK repository from GitHub.

(xblock-env) $ git clone https://github.com/openedx/xblock-sdk.git

	In the same directory, create an empty directory called var.

(xblock-env) $ mkdir var

	Run the following command to change to the xblock-sdk directory.

(xblock-env) $ cd xblock-sdk

	Run the following commands to install the XBlock SDK requirements.

(xblock-env) $ make install

	Run the following command to return to the xblock_development directory,
where you will perform the rest of your work.

(xblock-env) $ cd ..

 // XBlock runtime implementation.

 var RuntimeProvider = (function() {

 var getRuntime = function(version) {
 if (! this.versions.hasOwnProperty(version)) {
 throw 'Unsupported XBlock version: ' + version;
 }
 return this.versions[version];
 };

 var versions = {
 1: {
 handlerUrl: function(block, handlerName, suffix, query) {
 suffix = typeof suffix !== 'undefined' ? suffix : '';
 query = typeof query !== 'undefined' ? query : '';
 var usage = $(block).data('usage');
 var url_selector = $(block).data('url_selector');
 if (url_selector !== undefined) {
 baseUrl = window[url_selector];
 }
 else {baseUrl = handlerBaseUrl;}

 // studentId and handlerBaseUrl are both defined in block.html
 return (baseUrl + usage +
 "/" + handlerName +
 "/" + suffix +
 "?student=" + studentId +
 "&" + query);
 },
 children: function(block) {
 return $(block).prop('xblock_children');
 },
 childMap: function(block, childName) {
 var children = this.children(block);
 for (var i = 0; i < children.length; i++) {
 var child = children[i];
 if (child.name == childName) {
 return child
 }
 }
 }
 }
 };

 return {
 getRuntime: getRuntime,
 versions: versions
 };
}());

var XBlock = (function () {

 var initializeBlock = function (element) {
 $(element).prop('xblock_children', initializeBlocks($(element)));

 var version = $(element).data('runtime-version');
 if (version === undefined) {
 return null;
 }

 var runtime = RuntimeProvider.getRuntime(version);
 var initFn = window[$(element).data('init')];
 var jsBlock;
 if(initFn.length == 2) {
 jsBlock = new initFn(runtime, element) || {};
 } else if (initFn.length == 3) {
 var data = $(".xblock_json_init_args", element).text();
 if (data) data = JSON.parse(data); else data = {};
 jsBlock = new initFn(runtime, element, data) || {};
 }

 jsBlock.element = element;
 jsBlock.name = $(element).data('name');
 return jsBlock;
 };

 var initializeBlocks = function (element) {
 return $(element).immediateDescendents('.xblock-v1').map(function(idx, elem) {
 return initializeBlock(elem);
 }).toArray();
 };

 return {
 initializeBlocks: initializeBlocks
 };
}());

var XBlockAsides = (function () {

 var initializeAside = function (element) {
 var version = $(element).data('runtime-version');
 if (version === undefined) {
 return null;
 }

 var runtime = RuntimeProvider.getRuntime(version);
 var initFn = window[$(element).data('init')];
 var jsBlock;
 // $(element).siblings('div.xblock-v1')[0]
 var block_element = $(element).siblings('[data-usage="'+$(element).data('block_id')+'"]')
 var data = $(".xblock_json_init_args", element).text();
 if (data) data = JSON.parse(data); else data = {};
 jsBlock = new initFn(runtime, element, block_element, data) || {};

 jsBlock.element = element;
 return jsBlock;
 };

 var initializeAsides = function (elements) {
 return elements.map(function(idx, elem) {
 return initializeAside(elem);
 }).toArray();
 };

 return {
 initializeAsides: initializeAsides
 };
}());

$(function() {
 // Find all the children of an element that match the selector, but only
 // the first instance found down any path. For example, we'll find all
 // the ".xblock" elements below us, but not the ones that are themselves
 // contained somewhere inside ".xblock" elements.
 $.fn.immediateDescendents = function(selector) {
 return this.children().map(function(idx, element) {
 if ($(element).is(selector)) {
 return element;
 } else {
 return $(element).immediateDescendents(selector).toArray();
 }
 });
 };

 $('body').on('ajaxSend', function(elm, xhr, s) {
 // Pass along the Django-specific CSRF token.
 xhr.setRequestHeader('X-CSRFToken', $.cookie('csrftoken'));
 });

 XBlock.initializeBlocks($('body'));
 XBlockAsides.initializeAsides($('.xblock_asides-v1'))
});

 /* CSS for MyXBlock */

 .myxblock_block .count {
 font-weight: bold;
 }

.myxblock_block p {
 cursor: pointer;
 }

 <div class="myxblock_block">
 <p>MyXBlock: count is now
 {self.count} (click me to increment).
 </p>
</div>

 /* Javascript for MyXBlock. */
function MyXBlock(runtime, element) {

 function updateCount(result) {
 $('.count', element).text(result.count);
 }

 var handlerUrl = runtime.handlerUrl(element, 'increment_count');

 $('p', element).click(function(eventObject) {
 $.ajax({
 type: "POST",
 url: handlerUrl,
 data: JSON.stringify({"hello": "world"}),
 success: updateCount
 });
 });

 $(function ($) {
 /* Here's where you'd do things on page load. */
 });
}

 """TO-DO: Write a description of what this XBlock is."""

import pkg_resources

from web_fragments.fragment import Fragment
from xblock.core import XBlock
from xblock.fields import Integer, Scope

class MyXBlock(XBlock):
 """
 TO-DO: document what your XBlock does.
 """

 # Fields are defined on the class. You can access them in your code as
 # self.<fieldname>.

 # TO-DO: delete count, and define your own fields.
 count = Integer(
 default=0, scope=Scope.user_state,
 help="A simple counter, to show something happening",
)

 def resource_string(self, path):
 """Handy helper for getting resources from our kit."""
 data = pkg_resources.resource_string(__name__, path)
 return data.decode("utf8")

 # TO-DO: change this view to display your data your own way.
 def student_view(self, context=None):
 """
 The primary view of the MyXBlock, shown to students
 when viewing courses.
 """
 html = self.resource_string("static/html/myxblock.html")
 frag = Fragment(html.format(self=self))
 frag.add_css(self.resource_string("static/css/myxblock.css"))
 frag.add_javascript(self.resource_string("static/js/src/myxblock.js"))
 frag.initialize_js('MyXBlock')
 return frag

 # TO-DO: change this handler to perform your own actions. You may need more
 # than one handler, or you may not need any handlers at all.
 @XBlock.json_handler
 def increment_count(self, data, suffix=''):
 """
 An example handler, which increments the data.
 """
 # Just to show data coming in...
 assert data['hello'] == 'world'

 self.count += 1
 return {"count": self.count}

 # TO-DO: change this to create the scenarios you'd like to see in the
 # workbench while developing your XBlock.
 @staticmethod
 def workbench_scenarios():
 """A canned scenario for display in the workbench."""
 return [
 ("MyXBlock",
 """<myxblock/>
 """),
 ("Multiple MyXBlock",
 """<vertical_demo>
 <myxblock/>
 <myxblock/>
 <myxblock/>
 </vertical_demo>
 """),
]

 .upvote, .downvote {
 cursor: pointer;
 border: 1px solid #888;
 padding: 0 .5em;
}
.upvote { color: green; }
.downvote { color: red; }

 class ThumbsBlockBase(object):
 upvotes = Integer(
 help="Number of up votes",
 default=0,
 scope=Scope.user_state_summary
)
 downvotes = Integer(
 help="Number of down votes",
 default=0,
 scope=Scope.user_state_summary
)
 voted = Boolean(
 help="Has this student voted?",
 default=False,
 scope=Scope.user_state
)

 <p>
 {self.upvotes}↑
 {self.downvotes}↓
</p>

 function ThumbsAside(runtime, element, block_element, init_args) {
 return new ThumbsBlock(runtime, element, init_args);
}

function ThumbsBlock(runtime, element, init_args) {
 function updateVotes(votes) {
 $('.upvote .count', element).text(votes.up);
 $('.downvote .count', element).text(votes.down);
 }

 var handlerUrl = runtime.handlerUrl(element, 'vote');

 $('.upvote', element).click(function(eventObject) {
 $.ajax({
 type: "POST",
 url: handlerUrl,
 data: JSON.stringify({voteType: 'up'}),
 success: updateVotes
 });
 });

 $('.downvote', element).click(function(eventObject) {
 $.ajax({
 type: "POST",
 url: handlerUrl,
 data: JSON.stringify({voteType: 'down'}),
 success: updateVotes
 });
 });
 return {};
};

 def student_view(self, context=None): # pylint: disable=W0613
 """
 Create a fragment used to display the XBlock to a student.
 `context` is a dictionary used to configure the display (unused)

 Returns a `Fragment` object specifying the HTML, CSS, and JavaScript
 to display.
 """

 # Load the HTML fragment from within the package and fill in the template

 html_str = pkg_resources.resource_string(
 __name__,
 "static/html/thumbs.html".decode('utf-8')
)
 frag = Fragment(str(html_str).format(block=self))

 # Load the CSS and JavaScript fragments from within the package
 css_str = pkg_resources.resource_string(
 __name__,
 "static/css/thumbs.css".decode('utf-8')
)
 frag.add_css(str(css_str))

 js_str = pkg_resources.resource_string(
 __name__,
 "static/js/src/thumbs.js".decode('utf-8')
)
 frag.add_javascript(str(js_str))

 frag.initialize_js('ThumbsBlock')
 return frag

 @XBlock.json_handler
def vote(self, data, suffix=''): # pylint: disable=unused-argument
 """
 Update the vote count in response to a user action.
 """
 # Here is where we would prevent a student from voting twice, but then
 # we couldn't click more than once in the demo!
 #
 # if self.voted:
 # log.error("cheater!")
 # return

 if data['voteType'] not in ('up', 'down'):
 log.error('error!')
 return

 if data['voteType'] == 'up':
 self.upvotes += 1
 else:
 self.downvotes += 1

 self.voted = True

 return {'up': self.upvotes, 'down': self.downvotes}

Create the SQLite Database

Before running the XBlock SDK the first time, you must create the SQLite
database.

	In the xblock_development directory, run the following command to create
the database and the tables.

(xblock-env) $ python xblock-sdk/manage.py migrate

Create an XBlock

You use the XBlock SDK to create skeleton files for an XBlock. To do this,
follow these steps at a command prompt.

	Change to the xblock_development directory, which contains the
var, xblock-env, and xblock-sdk subdirectories.

	Run the following command to create the skeleton
files for the XBlock.

(xblock-env) $ xblock-sdk/bin/workbench-make-xblock

Instructions in the command window instruct you to determine a short name
and a class name. Follow the guidelines in the command window to determine
the names that you want to use.

You will be prompted for two pieces of information:

* Short name: a single word, all lower-case, for directory and file
 names. For a hologram 3-D XBlock, you might choose "holo3d".

* Class name: a valid Python class name. It's best if this ends with
 "XBlock", so for our hologram XBlock, you might choose
 "Hologram3dXBlock".

Once you specify those two names, a directory is created in the
``xblock_development`` directory containing the new project.

If you don't want to create the project here, or you enter a name
incorrectly, type Ctrl-C to stop the creation script. If you don't want
the resulting project, delete the directory it created.

	At the command prompt, enter the Short Name you selected for your XBlock.

$ Short name: myxblock

	At the command prompt, enter the Class name you selected for your XBlock.

$ Class name: MyXBlock

The skeleton files for the XBlock are created in the myxblock directory.
For more information about the XBlock files, see
Anatomy of an XBlock.

Install the XBlock

After you create the XBlock, you install it in the XBlock SDK.

In the xblock_development directory, use pip to install your XBlock.

(xblock-env) $ pip install -e myxblock

You can then test your XBlock in the XBlock SDK.

Run the XBlock SDK Server

To see the web interface of the XBlock SDK, you must run the SDK server.

In the xblock_development directory, run the following command to start the
server.

(xblock-env) $ python xblock-sdk/manage.py runserver

Note

If you do not specify a port, the XBlock SDK server uses port 8000.
To use a different port, specify it in the runserver command.

Then test that the XBlock SDK is running. In a browser, go to
http://localhost:8000. You should see the following page.

[image: The XBlock SDK home page.]
The page shows the XBlocks installed automatically with the XBlock SDK. Note
that the page also shows the MyXBlock XBlock that you created in
Create Your First XBlock.

Get Help for the XBlock SDK Server

To get help for the XBlock SDK runserver command, run the following
command.

(xblock-env) $ python xblock-sdk/manage.py help

The command window lists and describes the available commands.

 The XBlock SDK is a Python application you use to help you build new XBlocks.
The XBlock SDK contains three main components:

	An XBlock creation tool that builds the skeleton of a new XBlock.

	An XBlock runtime for viewing and testing your XBlocks during development.

	Sample XBlocks that you can use as the starting point for new XBlocks, and
for your own learning.

 _images/XBlock_URL_example_after.png
© @ | https://courses.edx.org/xblock/block-v1:edX+VideoX+1T2016+type@video+block@47faf3a03¢414023

Welcome To edX's Video Course

> 0:00/1:41 » Speed 1.0x

Download transcript

_images/XBlock_URL_example_before.png
Home Course Discussion Wik Progress

Introduction > Getting Started > Introduction

Introduction < L B = @] @ (=] @ Next
Getting Started
Discussi Introduction
iscussion #1
Discussion 2 R Bookmark this page
Activity: Getting Started
(OPTIONAL) Welcome To edX's Video Course

R

Video Production Project
Start of transcript. Skip to the end.

Pre-Production

Production

Post-Production

Delivery
JAMES: All right, this s take 15,

ERIK: All right.
JAMES: Okay, action.
ERIK: Welcome to VideoX.

Next Steps

t'm Erik Brown, and I, along with
video producer,

James Donald, will be your host
throughout this course.
> o00/141 » Speed 1.50x

VideoX s geared towards

Transcripts
Download SubRip (srt) file

Download Text (txt) file

< Previou Next >

_images/Screenshot_1.png
Editing: Question

Question ‘ What part of the lecture intrigued you the most?

Question to ask the student

Question ID (name) test-drive-1

“The ID of this block. Should be unique unless you want the answer to be used in multple places.

Min. Allowed Characters o

Minimum number of characters allowed for the answer

_images/Screenshot_2.png
Week 1: Welcome and Orientation / Change Diary: Using the Change D...
/ Entering your writing into the Cha...

Mentoring Questions »

SEDT ® & @

Entering your writing into the Change Diary

On this page, you will have the chance to enter some of your own writing into the Change Diary. Usually, there is a set of
instructions to read, followed by a text box for you to enter your own writing. You can see that text box / entry field
below. Try entering some text below, then click submit.

Question SEDT ® & @

Add New Component

Mo Chks Quesion Mt Respors Quetn
HTML Long Answer Recap Answer Recap Table Message (Complete)
Message (Incomplete) Message (Max # Attempts)

url_name for linking to this mentoring question set: mentoring_£irst

_images/icon_class_other.png

_images/icon_class_problem.png

_images/google-calendar-edit.png
Editing: Google Calendar

Display Name Google Calendar

This name appears in the horizontal navigation at the top of the page.

Public Calendar ID abcdefghijkimnop1234567890@g... | (9)

‘Google provides an ID for publicly available calendars. In the Google Calendar, open Settings and copy the ID
from the Calendar Address section into this field. You can learn more here.

Default View [Month

The calendar view that students see by default. A student can change this view.

_images/google-spreadsheet.png
Event Fees : Sheet!

Email Adults Children Due Comped AmtRec'd Donated Balance Ck#Cash Notes

client!@example.com 1 $50.00 $50.00

client2@example.com 1 $50.00 $50.00 5000 Staff

client3@example.com 1 $50.00 $50.00 5000 412
ient4@example.com 2 $100.00 $50.00 $50.00 Staff

clients@example.com 1 $50.00 $6000 $10.00 -§10.00 7334

clients@example.com 3 2 520000 $50.00 $150.00

client7@example.com 1 $50.00 $50.00 5000 Scholarship

client8@example.com 2 1 $125.00 $125.00

cliento@example.com 4 520000 $50.00 $150.00 580 Staff

clentlo@example.com 2 $100.00 $100.00

client!1@example.com 2 $100.00 $5000 $50.00 5000 327 Staff

clenti2@example.com 1 $50.00 $50.00

Total $1,12500 $300.00 $160.00 $10.00 $665.00

Shoot1

_images/icon_class_video.png

_images/sdk_ui.png
XBlock scenarios

XBlock Acid single block test
XBlock Acid Parent test

All Scopes

filethumbs

Hello World

A little HTML

problem with thumbs and textbox
three problems 2

MyXBlock

Multiple MyXBlock

three thumbs at once

Reset State

nav.xhtml

 Table of Contents

 		
 Open edX XBlock API Guide

 		
 Change history for XBlock

 		
 Introduction to XBlocks

 		
 XBlock API

 		
 Fields API

 		
 Runtime API

 		
 Plugins API

 		
 Exceptions API

 		
 Open edX XBlock Tutorial

 		
 Introduction

 		
 XBlock Overview

 		
 Introduction to XBlocks

 		
 XBlock Examples

 		
 Build an XBlock: Quick Start

 		
 Install XBlock Prerequisites

 		
 Set Up the XBlock Software Development Kit

 		
 Create Your First XBlock

 		
 What Browsers Do I Need to Support?

 		
 Anatomy of an XBlock

 		
 The XBlock Python File

 		
 The XBlock HTML File

 		
 The XBlock JavaScript File

 		
 The XBlock Stylesheets

 		
 Customize Your XBlock

 		
 Customize myxblock.py

 		
 Customize myxblock.html

 		
 Customize myxblock.js

 		
 Customize myxblock.css

 		
 XBlock Concepts

 		
 XBlock Fields

 		
 XBlock Methods

 		
 XBlock Fragments

 		
 XBlock Children

 		
 XBlock Runtimes

 		
 XBlocks, Events, and Grading

 		
 XBlocks and the edX Platform

 		
 Open edX Studio as an XBlock Runtime

 		
 Open edX Learning Management System as an XBlock Runtime

 		
 Deploy Your XBlock in Devstack

 		
 Submit Your XBlock to edX

 		
 Open edX Glossary

 		
 Using XBlock Software Development Kit

 		
 Getting Started with the XBlock SDK

 		
 Xblock.utils

 		
 Settings and theme support

_static/minus.png

_static/plus.png

_static/file.png

