
XBlock API Guide

The Axim Collaborative

Apr 25, 2024

CONTENTS

1 Change history for XBlock 3
1.1 Unreleased . 3
1.2 4.0.1 - 2024-04-24 . 3
1.3 4.0.0 - 2024-04-18 . 3
1.4 3.0.0 - 2024-03-18 . 3
1.5 2.0.0 - 2024-02-26 . 4
1.6 1.10.0 - 2024-01-12 . 5
1.7 1.9.1 - 2023-12-22 . 5
1.8 1.9.0 - 2023-11-20 . 5
1.9 1.8.1 - 2023-10-07 . 5
1.10 1.8.0 - 2023-09-25 . 5
1.11 1.7.0 - 2023-08-03 . 5
1.12 1.6.1 - 2022-01-28 . 6
1.13 1.6.0 - 2022-01-25 . 6
1.14 1.5.1 - 2021-08-26 . 6
1.15 1.5.0 - 2021-07-27 . 6
1.16 1.4.2 - 2021-05-24 . 6
1.17 1.4.1 - 2021-03-20 . 6
1.18 1.3.1 - 2020-05-06 . 6
1.19 1.3.0 - 2020-05-04 . 6
1.20 1.2.8 - 2019-10-24 . 7
1.21 1.2.7 - 2019-10-15 . 7
1.22 1.2.6 - 2019-09-24 . 7
1.23 1.2.5 - 2019-09-19 . 7
1.24 1.2.4 - 2019-08-27 . 7
1.25 1.2.3 - 2019-07-24 . 7
1.26 1.2.1 - 2018-09-05 . 7
1.27 1.2.1 - 2018-06-25 . 7
1.28 1.2.0 - Aside filtering . 8
1.29 1.0 - Python 3 . 8
1.30 0.5 - ??? . 8
1.31 0.4 . 8
1.32 0.3 - 2014-01-09 . 8

2 Introduction to XBlocks 11
2.1 Overview . 11
2.2 XBlock Independence and Interoperability . 11
2.3 XBlocks Compared to Web Applications . 12

3 XBlock API 13

i

4 Fields API 21

5 Runtime API 29

6 Plugins API 39

7 Exceptions API 41

8 Open edX XBlock Tutorial 43
8.1 Introduction . 43
8.2 XBlock Overview . 43
8.3 Build an XBlock: Quick Start . 49
8.4 Anatomy of an XBlock . 55
8.5 Customize Your XBlock . 60
8.6 XBlock Concepts . 69
8.7 XBlocks and the edX Platform . 89
8.8 Open edX Glossary . 94
8.9 Appendices . 95

9 Xblock.utils 99
9.1 Package having various utilities for XBlocks . 99

Python Module Index 107

Index 109

ii

XBlock API Guide

This document provides reference information on the XBlock API. You use this API to build XBlocks.

This document also contains the Open edX XBlock Tutorial, which describes XBlock concepts in depth and guides
developers through the process of creating an XBlock.

CONTENTS 1

XBlock API Guide

2 CONTENTS

CHAPTER

ONE

CHANGE HISTORY FOR XBLOCK

1.1 Unreleased

1.2 4.0.1 - 2024-04-24

• unpin lxml constraint.

1.3 4.0.0 - 2024-04-18

• xblock.fragment has returned as a pass-though component to web_fragments.fragment

1.4 3.0.0 - 2024-03-18

Various extraneous classes have been removed from the XBlock API, simplifying its implementation and making de-
bugging of XBlock instances easier. We believe that most, if not all, XBlock API users will be unaffected by this
change. Some improvements have also been made to the reference documentation.

Specific changes:

• Removed:

– xblock.XBlockMixin (still available as xblock.core.XBlockMixin)

– xblock.core.SharedBlockBase (replaced with xblock.core.Blocklike)

– xblock.internal.Nameable

– xblock.internal.NamedAttributesMetaclass

– xblock.django.request.HeadersDict

– xblock.fields.XBlockMixin (still available as xblock.core.XBlockMixin)

– xblock.mixins.RuntimeServicesMixin

– xblock.mixins.ScopedStorageMixin

– xblock.mixins.IndexInfoMixin

– xblock.mixins.XmlSerializationMixin

– xblock.mixins.HandlersMixin

– xblock.mixins.ChildrenModelMetaclass

3

XBlock API Guide

– xblock.mixins.HierarchyMixin

– xblock.mixins.ViewsMixin

• Added:

– xblock.core.Blocklike, the new common ancestor of XBlock and XBlockAside, and XBlockMixin,
replacing xblock.core.SharedBlockBase.

– New attributes on xblock.core.XBlockAside, each behaving the same as their XBlock counterpart:

∗ usage_key

∗ context_key

∗ index_dictionary

– Various new attributes on xblock.core.XBlockMixin, encompassing the functionality of these former
classes:

∗ xblock.mixins.IndexInfoMixin

∗ xblock.mixins.XmlSerializationMixin

∗ xblock.mixins.HandlersMixin

• Docs

– Various docstrings have been improved, some of which are published in the docs.

– XBlockAside will now be represented in the API docs, right below XBlock on the “XBlock API” page.

– XBlockMixin has been removed from the docs. It was only ever documented under the “Fields API” page
(which didn’t make any sense), and it was barely even documented there. We considered adding it back to
the “XBlock API” page, but as noted in the class’s new docstring, we do not want to encourage any new
use of XBlockMixin.

1.5 2.0.0 - 2024-02-26

• Removed deprecations

• xblock.fragment (removed completely)

• xblock.runtime.Runtime._aside_from_xml (just the id_generator argument)

• xblock.runtime.Runtime._usage_id_from_node (just the id_generator argument)

• xblock.runtime.Runtime.add_node_as_child (just the id_generator argument)

• xblock.runtime.Runtime.parse_xml_string (just the id_generator argument)

• xblock.runtime.Runtime.parse_xml_file (just the id_generator argument)

4 Chapter 1. Change history for XBlock

XBlock API Guide

1.6 1.10.0 - 2024-01-12

• Add two new properties to XBlock objects: .usage_key and .context_key. These simply expose the values
of .scope_ids.usage_id and .scope_ids.usage_id.context_key, providing a convenient replacement
to the deprecated, edx-platform-specific block properties .location and .course_id, respectively.

1.7 1.9.1 - 2023-12-22

• Fix: add get_javascript_i18n_catalog_url missing xblock parameter to match the Open edX LMS
XBlockI18nService.

1.8 1.9.0 - 2023-11-20

• Support for OEP-58 JavaScript translations:

– Introduced abstract JavaScript translations support by adding the i18n_js_namespace property and
get_i18n_js_namespacemethod to the SharedBlockBase. This allows XBlocks to define a JavaScript
namespace so the XBlock i18n runtime service can manage and load JavaScript translations for XBlocks.

– Added the stub get_javascript_i18n_catalog_urlmethod to the NullI18nService class to be im-
plemented by runtime services.

– See the edx-platform atlas translations proposal

1.9 1.8.1 - 2023-10-07

• Python Requirements Update

• Update setup.py, adds required packages

1.10 1.8.0 - 2023-09-25

• Added xblock-utils repository code into this repository along with docs.

– Docs moved into the docs/ directory.

– See https://github.com/openedx/xblock-utils/issues/197 for more details.

1.11 1.7.0 - 2023-08-03

• Switch from edx-sphinx-theme to sphinx-book-theme since the former is deprecated. See https://github.
com/openedx/edx-sphinx-theme/issues/184 for more details.

• Added support for Django 4.2

1.6. 1.10.0 - 2024-01-12 5

https://docs.openedx.org/en/latest/developers/concepts/oep58.html
https://github.com/openedx/edx-platform/blob/master/docs/decisions/0019-oep-58-atlas-translations-design.rst
https://github.com/openedx/xblock-utils
https://github.com/openedx/xblock-utils/issues/197
https://github.com/openedx/edx-sphinx-theme/issues/184
https://github.com/openedx/edx-sphinx-theme/issues/184

XBlock API Guide

1.12 1.6.1 - 2022-01-28

• Fix Release Issue with PyPi release workflow

1.13 1.6.0 - 2022-01-25

• Dropped Django22, 30 and 31 support

• Added Django40 Support in CI

1.14 1.5.1 - 2021-08-26

• Deprecated the Runtime.user_id property in favor of the user service.

1.15 1.5.0 - 2021-07-27

• Added Django 3.0, 3.1 & 3.2 support

1.16 1.4.2 - 2021-05-24

• Upgraded all Python dependencies.

1.17 1.4.1 - 2021-03-20

• Added XBlockParseException exception.

1.18 1.3.1 - 2020-05-06

• Fixed import error of mock.

1.19 1.3.0 - 2020-05-04

• Drop support to python 2.7 and add support to python 3.8. typing package failing on py3.8 so add constraint.

6 Chapter 1. Change history for XBlock

XBlock API Guide

1.20 1.2.8 - 2019-10-24

• Ensure the version file is closed after reading its content.

1.21 1.2.7 - 2019-10-15

• Changed how illegal XML characters are sanitized, to speed the operation. The old way was removing more
characters than are required by the XML specification.

1.22 1.2.6 - 2019-09-24

• Add support for relative dates to DateTime fields.

1.23 1.2.5 - 2019-09-19

• Changes for Python 2/3 compatibility.

1.24 1.2.4 - 2019-08-27

• Added an API for notifying the Runtime when an XBlock’s save() method is called.

• Added a mechanism for Runtime subclasses to more easily add extra CSS classes to the <div> that wraps rendered
XBlocks

1.25 1.2.3 - 2019-07-24

Allow Mixologist class to consume both class objects and string paths to classes as a part of initialization.

1.26 1.2.1 - 2018-09-05

Add a method to get completion mode for a block.

1.27 1.2.1 - 2018-06-25

Suppress a spurious warning when using lazily-translated text as the default value of a String field.

1.20. 1.2.8 - 2019-10-24 7

XBlock API Guide

1.28 1.2.0 - Aside filtering

• Add capability for XBlockAsides to apply only to XBlocks that match certain conditions

1.29 1.0 - Python 3

• Introduce Python 3 compatibility to the xblock code base. This does not enable Python 2 codebases (like edx-
platform) to load xblocks written in Python 3, but it lays the groundwork for future migrations.

1.30 0.5 - ???

No notes provided.

1.31 0.4

• Separate Fragment class out into new web-fragments package

• Make Scope enums (UserScope.* and BlockScope.*) into Sentinels, rather than just ints, so that they can have
more meaningful string representations.

• Rename export_xml to add_xml_to_node, to more accurately capture the semantics.

• Allowed Runtime implementations to customize loading from block_types to XBlock classes.

1.32 0.3 - 2014-01-09

• Added services available through Runtime.service, once XBlocks have announced their desires with
@XBlock.needs and @XBlock.wants.

• The “i18n” service provides a gettext.Translations object for retrieving localized strings.

• Make context an optional parameter for all views.

• Add shortcut method to make rendering an XBlock’s view with its own runtime easier.

• Change the user field of scopes to be three valued, rather than two. False becomes UserScope.NONE, True
becomes UserScope.ONE, and UserScope.ALL is new, and represents data that is computed based on input from
many users.

• Rename ModelData to FieldData.

• Rename ModelType to Field.

• Split xblock.core into a number of smaller modules:

– xblock.core: Defines XBlock.

– xblock.fields: Defines ModelType and subclasses, ModelData, and metaclasses for classes with fields.

– xblock.namespaces: Code for XBlock Namespaces only.

– xblock.exceptions: exceptions used by all parts of the XBlock project.

8 Chapter 1. Change history for XBlock

XBlock API Guide

• Changed the interface for Runtime and ModelData so that they function as single objects that manage large
numbers of XBlocks. Any method that operates on a block now takes that block as the first argument. Blocks, in
turn, are responsible for storing the key values used by their field scopes.

• Changed the interface for model_data objects passed to XBlocks from dict-like to the being cache-like (as was
already used by KeyValueStore). This removes the need to support methods like iteration and length, which
makes it easier to write new ModelDatas. Also added an actual ModelData base class to serve as the expected
interface.

1.32. 0.3 - 2014-01-09 9

XBlock API Guide

10 Chapter 1. Change history for XBlock

CHAPTER

TWO

INTRODUCTION TO XBLOCKS

This section introduces XBlocks.

• Overview

• XBlock Independence and Interoperability

• XBlocks Compared to Web Applications

2.1 Overview

As a developer, you build XBlocks that course teams use to create independent course components that work seamlessly
with other components in an online course.

For example, you can build XBlocks to represent individual problems or pieces of text or HTML content. Furthermore,
like Legos, XBlocks are composable; you can build XBlocks to represent larger structures such as lessons, sections,
and entire courses.

A primary advantage to XBlocks is that they are sharable. The code you write can be deployed in any instance of the
Open edX Platform or other XBlock runtime application, then used by any course team using that system.

In educational applications, XBlocks can be used to represent individual problems, web-formatted text and videos, in-
teractive simulations and labs, or collaborative learning experiences. Furthermore, XBlocks are composable, allowing
an XBlock developer to control the display of other XBlocks to compose lessons, sections, and entire courses.

2.2 XBlock Independence and Interoperability

You must design your XBlock to meet two goals.

• The XBlock must be independent of other XBlocks. Course teams must be able to use the XBlock without
depending on other XBlocks.

• The XBlock must work together with other XBlocks. Course teams must be able to combine different XBlocks
in flexible ways.

11

XBlock API Guide

2.3 XBlocks Compared to Web Applications

XBlocks are like miniature web applications: they maintain state in a storage layer, render themselves through views,
and process user actions through handlers.

XBlocks differ from web applications in that they render only a small piece of a complete web page.

Like HTML <div> tags, XBlocks can represent components as small as a paragraph of text, a video, or a multiple
choice input field, or as large as a section, a chapter, or an entire course.

12 Chapter 2. Introduction to XBlocks

CHAPTER

THREE

XBLOCK API

class xblock.core.XBlock(runtime, field_data=None, scope_ids=<object object>, *args, **kwargs)
Base class for XBlocks. Derive from this class to create new type of XBlock.

Subclasses of XBlocks can:

• Name one or more views, i.e. methods which render the block to HTML.

• Access the parents of their instances.

• Access and manage the children of their instances.

• Request services from the runtime, for their instances to use.

• Define scoped fields, which instances will use to store content, settings, and data.

• Define how instances are serialized to and deserialized from OLX (Open Learning XML).

• Mark methods as handlers for AJAX requests.

• Be installed into a platform as an entry-point plugin.

Note: Don’t override the __init__ method when deriving from this class.

Parameters

• runtime (Runtime) – Use it to access the environment. It is available in XBlock code as
self.runtime.

• field_data (FieldData) – Interface used by the XBlock fields to access their data from
wherever it is persisted. Deprecated.

• scope_ids (ScopeIds) – Identifiers needed to resolve scopes.

add_children_to_node(node)
Add children to etree.Element node.

add_xml_to_node(node)
For exporting, set data on etree.Element node.

clear_child_cache()

Reset the cache of children stored on this XBlock.

property context_key

A key identifying the learning context (course, library, etc.) that contains this XBlock-like usage.

Equivalent to .scope_ids.usage_id.context_key.

Returns: * LearningContextKey, if .scope_ids.usage_id is a UsageKey instance. * None, otherwise.

After https://github.com/openedx/XBlock/issues/708 is complete, we can assume that .scope_ids.usage_id
is always a UsageKey, and that this method will always return a LearningContextKey.

13

https://github.com/openedx/XBlock/issues/708

XBlock API Guide

force_save_fields(field_names)
Save all fields that are specified in field_names, even if they are not dirty.

get_child(usage_id)
Return the child identified by usage_id.

get_children(usage_id_filter=None)
Return instantiated XBlocks for each of this blocks children.

classmethod get_i18n_js_namespace()

Gets the JavaScript translations namespace for this XBlock-like class.

Returns
The JavaScript namespace for this XBlock-like class. None: If this doesn’t have JavaScript
translations configured.

Return type
str

get_parent()

Return the parent block of this block, or None if there isn’t one.

classmethod get_public_dir()

Gets the public directory for this XBlock-like class.

classmethod get_resources_dir()

Gets the resource directory for this XBlock-like class.

handle(handler_name, request, suffix='')
Handle request with this block’s runtime.

classmethod handler(func)
A decorator to indicate a function is usable as a handler.

The wrapped function must return a webob.Response object.

property has_cached_parent

Return whether this block has a cached parent block.

has_support(view, functionality)
Returns whether the given view has support for the given functionality.

An XBlock view declares support for a functionality with the @XBlock.supports decorator. The decorator
stores information on the view.

Note: We implement this as an instance method to allow xBlocks to override it, if necessary.

Parameters

• view (object) – The view of the xBlock.

• functionality (str) – A functionality of the view. For example: “multi_device”.

Returns
True or False

index_dictionary()

Return a dict containing information that could be used to feed a search index.

Values may be numeric, string, or dict.

14 Chapter 3. XBlock API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

XBlock API Guide

classmethod json_handler(func)
Wrap a handler to consume and produce JSON.

Rather than a Request object, the method will now be passed the JSON-decoded body of the request. The
request should be a POST request in order to use this method. Any data returned by the function will be
JSON-encoded and returned as the response.

The wrapped function can raise JsonHandlerError to return an error response with a non-200 status code.

This decorator will return a 405 HTTP status code if the method is not POST. This decorator will return a
400 status code if the body contains invalid JSON.

classmethod load_class(identifier, default=None, select=None)
Load a single class specified by identifier.

If identifier specifies more than a single class, and select is not None, then call select on the list of en-
try_points. Otherwise, choose the first one and log a warning.

If default is provided, return it if no entry_point matching identifier is found. Otherwise, will raise a
PluginMissingError

If select is provided, it should be a callable of the form:

def select(identifier, all_entry_points):
...
return an_entry_point

The all_entry_points argument will be a list of all entry_points matching identifier that were found, and
select should return one of those entry_points to be loaded. select should raise PluginMissingError if no
plugin is found, or AmbiguousPluginError if too many plugins are found

classmethod load_classes(fail_silently=True)
Load all the classes for a plugin.

Produces a sequence containing the identifiers and their corresponding classes for all of the available in-
stances of this plugin.

fail_silently causes the code to simply log warnings if a plugin cannot import. The goal is to be able to use
part of libraries from an XBlock (and thus have it installed), even if the overall XBlock cannot be used (e.g.
depends on Django in a non-Django application). There is disagreement about whether this is a good idea,
or whether we should see failures early (e.g. on startup or first page load), and in what contexts. Hence, the
flag.

classmethod load_tagged_classes(tag, fail_silently=True)
Produce a sequence of all XBlock classes tagged with tag.

fail_silently causes the code to simply log warnings if a plugin cannot import. The goal is to be able to use
part of libraries from an XBlock (and thus have it installed), even if the overall XBlock cannot be used (e.g.
depends on Django in a non-Django application). There is diagreement about whether this is a good idea,
or whether we should see failures early (e.g. on startup or first page load), and in what contexts. Hence, the
flag.

classmethod needs(*service_names)
A class decorator to indicate that an XBlock-like class needs particular services.

classmethod open_local_resource(uri)
Open a local resource.

The container calls this method when it receives a request for a resource on a URL which was generated
by Runtime.local_resource_url(). It will pass the URI from the original call to local_resource_url() back to
this method. The XBlock-like must parse this URI and return an open file-like object for the resource.

15

XBlock API Guide

For security reasons, the default implementation will return only a very restricted set of file types, which
must be located in a folder that defaults to “public”. The location used for public resources can be changed
on a per-XBlock-like basis. XBlock-like authors who want to override this behavior will need to take care
to ensure that the method only serves legitimate public resources. At the least, the URI should be matched
against a whitelist regex to ensure that you do not serve an unauthorized resource.

classmethod parse_xml(node, runtime, keys)
Use node to construct a new block.

Parameters

• node (Element) – The xml node to parse into an xblock.

• runtime (Runtime) – The runtime to use while parsing.

• keys (ScopeIds) – The keys identifying where this block will store its data.

classmethod register_temp_plugin(class_, identifier=None, dist='xblock')
Decorate a function to run with a temporary plugin available.

Use it like this in tests:

@register_temp_plugin(MyXBlockClass):
def test_the_thing():

Here I can load MyXBlockClass by name.

render(view, context=None)
Render view with this block’s runtime and the supplied context

save()

Save all dirty fields attached to this XBlock.

classmethod service_declaration(service_name)
Find and return a service declaration.

XBlock-like classes declare their service requirements with @XBlock{Aside}.needs and
@XBlock{Aside}.wants decorators. These store information on the class. This function finds those
declarations for a block.

Parameters
service_name (str) – the name of the service requested.

Returns
One of “need”, “want”, or None.

classmethod supports(*functionalities)
A view decorator to indicate that an xBlock view has support for the given functionalities.

Parameters
functionalities – String identifiers for the functionalities of the view. For example:
“multi_device”.

static tag(tags)
Returns a function that adds the words in tags as class tags to this class.

ugettext(text)
Translates message/text and returns it in a unicode string. Using runtime to get i18n service.

16 Chapter 3. XBlock API

https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element
https://docs.python.org/3/library/stdtypes.html#str

XBlock API Guide

property usage_key

A key identifying this particular usage of the XBlock-like, unique across all learning contexts in the system.

Equivalent to to .scope_ids.usage_id.

validate()

Ask this xblock to validate itself. Subclasses are expected to override this method, as there is currently
only a no-op implementation. Any overriding method should call super to collect validation results from
its superclasses, and then add any additional results as necessary.

classmethod wants(*service_names)
A class decorator to indicate that a XBlock-like class wants particular services.

xml_element_name()

What XML element name should be used for this block?

xml_text_content()

What is the text content for this block’s XML node?

class xblock.core.XBlockAside(scope_ids, field_data=None, *, runtime, **kwargs)
Base class for XBlock-like objects that are rendered alongside XBlock views.

Subclasses of XBlockAside can:

• Specify which XBlock views they are to be injected into.

• Request services from the runtime, for their instances to use.

• Define scoped fields, which instances will use to store content, settings, and data.

• Define how instances are serialized to and deserialized from OLX (Open Learning XML).

• Mark methods as handlers for AJAX requests.

• Be installed into a platform as an entry-point plugin.

Parameters

• scope_ids (ScopeIds) – Identifiers needed to resolve scopes.

• field_data (FieldData) – Interface used by XBlock-likes’ fields to access their data from
wherever it is persisted. DEPRECATED–supply a field-data Runtime service instead.

• runtime (Runtime) – Use it to access the environment. It is available in XBlock code as
self.runtime.

add_xml_to_node(node)
For exporting, set data on node from ourselves.

classmethod aside_for(view_name)
A decorator to indicate a function is the aside view for the given view_name.

Aside views should have a signature like:

@XBlockAside.aside_for('student_view')
def student_aside(self, block, context=None):

...
return Fragment(...)

17

XBlock API Guide

aside_view_declaration(view_name)
Find and return a function object if one is an aside_view for the given view_name

Aside methods declare their view provision via @XBlockAside.aside_for(view_name) This function finds
those declarations for a block.

Parameters
view_name (str) – the name of the view requested.

Returns
either the function or None

property context_key

A key identifying the learning context (course, library, etc.) that contains this XBlock-like usage.

Equivalent to .scope_ids.usage_id.context_key.

Returns: * LearningContextKey, if .scope_ids.usage_id is a UsageKey instance. * None, otherwise.

After https://github.com/openedx/XBlock/issues/708 is complete, we can assume that .scope_ids.usage_id
is always a UsageKey, and that this method will always return a LearningContextKey.

force_save_fields(field_names)
Save all fields that are specified in field_names, even if they are not dirty.

classmethod get_i18n_js_namespace()

Gets the JavaScript translations namespace for this XBlock-like class.

Returns
The JavaScript namespace for this XBlock-like class. None: If this doesn’t have JavaScript
translations configured.

Return type
str

classmethod get_public_dir()

Gets the public directory for this XBlock-like class.

classmethod get_resources_dir()

Gets the resource directory for this XBlock-like class.

handle(handler_name, request, suffix='')
Handle request with this block’s runtime.

classmethod handler(func)
A decorator to indicate a function is usable as a handler.

The wrapped function must return a webob.Response object.

index_dictionary()

Return a dict containing information that could be used to feed a search index.

Values may be numeric, string, or dict.

classmethod json_handler(func)
Wrap a handler to consume and produce JSON.

Rather than a Request object, the method will now be passed the JSON-decoded body of the request. The
request should be a POST request in order to use this method. Any data returned by the function will be
JSON-encoded and returned as the response.

The wrapped function can raise JsonHandlerError to return an error response with a non-200 status code.

18 Chapter 3. XBlock API

https://docs.python.org/3/library/stdtypes.html#str
https://github.com/openedx/XBlock/issues/708
https://docs.python.org/3/library/stdtypes.html#str

XBlock API Guide

This decorator will return a 405 HTTP status code if the method is not POST. This decorator will return a
400 status code if the body contains invalid JSON.

classmethod load_class(identifier, default=None, select=None)
Load a single class specified by identifier.

If identifier specifies more than a single class, and select is not None, then call select on the list of en-
try_points. Otherwise, choose the first one and log a warning.

If default is provided, return it if no entry_point matching identifier is found. Otherwise, will raise a
PluginMissingError

If select is provided, it should be a callable of the form:

def select(identifier, all_entry_points):
...
return an_entry_point

The all_entry_points argument will be a list of all entry_points matching identifier that were found, and
select should return one of those entry_points to be loaded. select should raise PluginMissingError if no
plugin is found, or AmbiguousPluginError if too many plugins are found

classmethod load_classes(fail_silently=True)
Load all the classes for a plugin.

Produces a sequence containing the identifiers and their corresponding classes for all of the available in-
stances of this plugin.

fail_silently causes the code to simply log warnings if a plugin cannot import. The goal is to be able to use
part of libraries from an XBlock (and thus have it installed), even if the overall XBlock cannot be used (e.g.
depends on Django in a non-Django application). There is disagreement about whether this is a good idea,
or whether we should see failures early (e.g. on startup or first page load), and in what contexts. Hence, the
flag.

classmethod needs(*service_names)
A class decorator to indicate that an XBlock-like class needs particular services.

needs_serialization()

Return True if the aside has any data to serialize to XML.

If all of the aside’s data is empty or a default value, then the aside shouldn’t be serialized as XML at all.

classmethod open_local_resource(uri)
Open a local resource.

The container calls this method when it receives a request for a resource on a URL which was generated
by Runtime.local_resource_url(). It will pass the URI from the original call to local_resource_url() back to
this method. The XBlock-like must parse this URI and return an open file-like object for the resource.

For security reasons, the default implementation will return only a very restricted set of file types, which
must be located in a folder that defaults to “public”. The location used for public resources can be changed
on a per-XBlock-like basis. XBlock-like authors who want to override this behavior will need to take care
to ensure that the method only serves legitimate public resources. At the least, the URI should be matched
against a whitelist regex to ensure that you do not serve an unauthorized resource.

classmethod parse_xml(node, runtime, keys)
Use node to construct a new block.

Parameters

• node (Element) – The xml node to parse into an xblock.

19

https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element

XBlock API Guide

• runtime (Runtime) – The runtime to use while parsing.

• keys (ScopeIds) – The keys identifying where this block will store its data.

classmethod register_temp_plugin(class_, identifier=None, dist='xblock')
Decorate a function to run with a temporary plugin available.

Use it like this in tests:

@register_temp_plugin(MyXBlockClass):
def test_the_thing():

Here I can load MyXBlockClass by name.

save()

Save all dirty fields attached to this XBlock.

classmethod service_declaration(service_name)
Find and return a service declaration.

XBlock-like classes declare their service requirements with @XBlock{Aside}.needs and
@XBlock{Aside}.wants decorators. These store information on the class. This function finds those
declarations for a block.

Parameters
service_name (str) – the name of the service requested.

Returns
One of “need”, “want”, or None.

classmethod should_apply_to_block(block)
Return True if the aside should be applied to a given block. This can be overridden if some aside should
only wrap blocks with certain properties.

property usage_key

A key identifying this particular usage of the XBlock-like, unique across all learning contexts in the system.

Equivalent to to .scope_ids.usage_id.

classmethod wants(*service_names)
A class decorator to indicate that a XBlock-like class wants particular services.

xml_element_name()

What XML element name should be used for this block?

xml_text_content()

What is the text content for this block’s XML node?

20 Chapter 3. XBlock API

https://docs.python.org/3/library/stdtypes.html#str

CHAPTER

FOUR

FIELDS API

Fields declare storage for XBlock data. They use abstract notions of scopes to associate each field with particular sets
of blocks and users. The hosting runtime application decides what actual storage mechanism to use for each scope.

class xblock.fields.BlockScope

Enumeration of block scopes.

The block scope specifies how a field relates to blocks. A BlockScope and a UserScope are combined to make
a Scope for a field.

USAGE: The data is related to a particular use of a block in a course.

DEFINITION: The data is related to the definition of the block. Although
unusual, one block definition can be used in more than one place in a course.

TYPE: The data is related to all instances of this type of XBlock.

ALL: The data is common to all blocks. This can be useful for storing
information that is purely about the student.

classmethod scopes()

Return a list of valid/understood class scopes.

class xblock.fields.Boolean(help=None, default=fields.UNSET, scope=ScopeBase(user=UserScope.NONE,
block=BlockScope.DEFINITION, name='content'), display_name=None,
**kwargs)

A field class for representing a boolean.

The value, as loaded or enforced, can be either a Python bool, a string, or any value that will then be converted
to a bool in the from_json method.

Examples:

True -> True
'true' -> True
'TRUE' -> True
'any other string' -> False
[] -> False
['123'] -> True
None - > False

enforce_type(value)
Coerce the type of the value, if necessary

Called on field sets to ensure that the stored type is consistent if the field was initialized with en-
force_type=True

21

XBlock API Guide

This must not have side effects, since it will be executed to trigger a DeprecationWarning even if en-
force_type is disabled

from_json(value)
Return value as a native full featured python type (the inverse of to_json)

Called during field reads to convert the stored value into a full featured python object

class xblock.fields.Dict(help=None, default=fields.UNSET, scope=ScopeBase(user=UserScope.NONE,
block=BlockScope.DEFINITION, name='content'), display_name=None,
values=None, enforce_type=False, xml_node=False, force_export=False,
**kwargs)

A field class for representing a Python dict.

The value, as loaded or enforced, must be either be None or a dict.

enforce_type(value)
Coerce the type of the value, if necessary

Called on field sets to ensure that the stored type is consistent if the field was initialized with en-
force_type=True

This must not have side effects, since it will be executed to trigger a DeprecationWarning even if en-
force_type is disabled

from_json(value)
Return value as a native full featured python type (the inverse of to_json)

Called during field reads to convert the stored value into a full featured python object

to_string(value)
In python3, json.dumps() cannot sort keys of different types, so preconvert None to ‘null’.

class xblock.fields.Field(help=None, default=fields.UNSET, scope=ScopeBase(user=UserScope.NONE,
block=BlockScope.DEFINITION, name='content'), display_name=None,
values=None, enforce_type=False, xml_node=False, force_export=False,
**kwargs)

A field class that can be used as a class attribute to define what data the class will want to refer to.

When the class is instantiated, it will be available as an instance attribute of the same name, by proxying through
to the field-data service on the containing object.

Parameters

• help (str) – documentation for the field, suitable for presenting to a user (defaults to None).

• default – field’s default value. Can be a static value or the special
xblock.fields.UNIQUE_ID reference. When set to xblock.fields.UNIQUE_ID, the
field defaults to a unique string that is deterministically calculated for the field in the given
scope (defaults to None).

• scope – this field’s scope (defaults to Scope.content).

• display_name – the display name for the field, suitable for presenting to a user (defaults to
name of the field).

• values – a specification of the valid values for this field. This can be specified as either
a static specification, or a function that returns the specification. For example specification
formats, see the values property definition.

22 Chapter 4. Fields API

https://docs.python.org/3/library/stdtypes.html#str

XBlock API Guide

• enforce_type – whether the type of the field value should be enforced on set, using
self.enforce_type, raising an exception if it’s not possible to convert it. This provides a guar-
antee on the stored value type.

• xml_node – if set, the field will be serialized as a separate node instead of an xml attribute
(default: False).

• force_export – if set, the field value will be exported to XML even if normal export con-
ditions are not met (i.e. the field has no explicit value set)

• kwargs – optional runtime-specific options/metadata. Will be stored as runtime_options.

property default

Returns the static value that this defaults to.

delete_from(xblock)
Delete the value for this field from the supplied xblock

property display_name

Returns the display name for this class, suitable for use in a GUI.

If no display name has been set, returns the name of the class.

enforce_type(value)
Coerce the type of the value, if necessary

Called on field sets to ensure that the stored type is consistent if the field was initialized with en-
force_type=True

This must not have side effects, since it will be executed to trigger a DeprecationWarning even if en-
force_type is disabled

from_json(value)
Return value as a native full featured python type (the inverse of to_json)

Called during field reads to convert the stored value into a full featured python object

from_string(serialized)
Returns a native value from a YAML serialized string representation. Since YAML is a superset of JSON,
this is the inverse of to_string.)

is_set_on(xblock)
Return whether this field has a non-default value on the supplied xblock

property name

Returns the name of this field.

static needs_name(field)
Returns whether the given) is yet to be named.

read_from(xblock)
Retrieve the value for this field from the specified xblock

read_json(xblock)
Retrieve the serialized value for this field from the specified xblock

to_json(value)
Return value in the form of nested lists and dictionaries (suitable for passing to json.dumps).

This is called during field writes to convert the native python type to the value stored in the database

23

XBlock API Guide

to_string(value)
Return a JSON serialized string representation of the value.

property values

Returns the valid values for this class. This is useful for representing possible values in a UI.

Example formats:

• A finite set of elements:

[1, 2, 3]

• A finite set of elements where the display names differ from the values:

[
{"display_name": "Always", "value": "always"},
{"display_name": "Past Due", "value": "past_due"},
]

• A range for floating point numbers with specific increments:

{"min": 0 , "max": 10, "step": .1}

If this field class does not define a set of valid values, this property will return None.

write_to(xblock, value)
Set the value for this field to value on the supplied xblock

class xblock.fields.Float(help=None, default=fields.UNSET, scope=ScopeBase(user=UserScope.NONE,
block=BlockScope.DEFINITION, name='content'), display_name=None,
values=None, enforce_type=False, xml_node=False, force_export=False,
**kwargs)

A field that contains a float.

The value, as loaded or enforced, can be None, ‘’ (which will be treated as None), a Python float, or a value that
will parse as an float, ie., something for which float(value) does not throw an error.

enforce_type(value)
Coerce the type of the value, if necessary

Called on field sets to ensure that the stored type is consistent if the field was initialized with en-
force_type=True

This must not have side effects, since it will be executed to trigger a DeprecationWarning even if en-
force_type is disabled

from_json(value)
Return value as a native full featured python type (the inverse of to_json)

Called during field reads to convert the stored value into a full featured python object

class xblock.fields.Integer(help=None, default=fields.UNSET, scope=ScopeBase(user=UserScope.NONE,
block=BlockScope.DEFINITION, name='content'), display_name=None,
values=None, enforce_type=False, xml_node=False, force_export=False,
**kwargs)

A field that contains an integer.

The value, as loaded or enforced, can be None, ‘’ (which will be treated as None), a Python integer, or a value
that will parse as an integer, ie., something for which int(value) does not throw an error.

24 Chapter 4. Fields API

XBlock API Guide

Note that a floating point value will convert to an integer, but a string containing a floating point number (‘3.48’)
will throw an error.

enforce_type(value)
Coerce the type of the value, if necessary

Called on field sets to ensure that the stored type is consistent if the field was initialized with en-
force_type=True

This must not have side effects, since it will be executed to trigger a DeprecationWarning even if en-
force_type is disabled

from_json(value)
Return value as a native full featured python type (the inverse of to_json)

Called during field reads to convert the stored value into a full featured python object

class xblock.fields.List(help=None, default=fields.UNSET, scope=ScopeBase(user=UserScope.NONE,
block=BlockScope.DEFINITION, name='content'), display_name=None,
values=None, enforce_type=False, xml_node=False, force_export=False,
**kwargs)

A field class for representing a list.

The value, as loaded or enforced, can either be None or a list.

enforce_type(value)
Coerce the type of the value, if necessary

Called on field sets to ensure that the stored type is consistent if the field was initialized with en-
force_type=True

This must not have side effects, since it will be executed to trigger a DeprecationWarning even if en-
force_type is disabled

from_json(value)
Return value as a native full featured python type (the inverse of to_json)

Called during field reads to convert the stored value into a full featured python object

class xblock.fields.Scope(user, block, name=None)
Defines six types of scopes to be used: content, settings, user_state, preferences, user_info, and
user_state_summary.

The content scope is used to save data for all users, for one particular block, across all runs of a course. An
example might be an XBlock that wishes to tabulate user “upvotes”, or HTML content ti display literally on the
page (this example being the reason this scope is named content).

The settings scope is used to save data for all users, for one particular block, for one specific run of a course.
This is like the content scope, but scoped to one run of a course. An example might be a due date for a problem.

The user_state scope is used to save data for one user, for one block, for one run of a course. An example might
be how many points a user scored on one specific problem.

The preferences scope is used to save data for one user, for all instances of one specific TYPE of block, across
the entire platform. An example might be that a user can set their preferred default speed for the video player.
This default would apply to all instances of the video player, across the whole platform, but only for that student.

The user_info scope is used to save data for one user, across the entire platform. An example might be a user’s
time zone or language preference.

The user_state_summary scope is used to save data aggregated across many users of a single block. For example,
a block might store a histogram of the points scored by all users attempting a problem.

25

XBlock API Guide

Create a new Scope, with an optional name.

classmethod named_scopes()

Return all named Scopes.

classmethod scopes()

Return all possible Scopes.

class xblock.fields.ScopeIds(user_id, block_type, def_id, usage_id)
A simple wrapper to collect all of the ids needed to correctly identify an XBlock (or other classes deriving from
ScopedStorageMixin) to a FieldData. These identifiers match up with BlockScope and UserScope attributes, so
that, for instance, the def_id identifies scopes that use BlockScope.DEFINITION.

Create new instance of ScopeIds(user_id, block_type, def_id, usage_id)

class xblock.fields.Set(*args, **kwargs)
A field class for representing a set.

The stored value can either be None or a set.

Set class constructor.

Redefined in order to convert default values to sets.

enforce_type(value)
Coerce the type of the value, if necessary

Called on field sets to ensure that the stored type is consistent if the field was initialized with en-
force_type=True

This must not have side effects, since it will be executed to trigger a DeprecationWarning even if en-
force_type is disabled

from_json(value)
Return value as a native full featured python type (the inverse of to_json)

Called during field reads to convert the stored value into a full featured python object

class xblock.fields.String(help=None, default=fields.UNSET, scope=ScopeBase(user=UserScope.NONE,
block=BlockScope.DEFINITION, name='content'), display_name=None,
values=None, enforce_type=False, xml_node=False, force_export=False,
**kwargs)

A field class for representing a string.

The value, as loaded or enforced, can either be None or a basestring instance.

enforce_type(value)
Coerce the type of the value, if necessary

Called on field sets to ensure that the stored type is consistent if the field was initialized with en-
force_type=True

This must not have side effects, since it will be executed to trigger a DeprecationWarning even if en-
force_type is disabled

from_json(value)
Return value as a native full featured python type (the inverse of to_json)

Called during field reads to convert the stored value into a full featured python object

from_string(serialized)
String gets serialized and deserialized without quote marks.

26 Chapter 4. Fields API

XBlock API Guide

property none_to_xml

Returns True to use a XML node for the field and represent None as an attribute.

to_string(value)
String gets serialized and deserialized without quote marks.

class xblock.fields.UserScope

Enumeration of user scopes.

The user scope specifies how a field relates to users. A BlockScope and a UserScope are combined to make a
Scope for a field.

NONE: Identifies data agnostic to the user of the XBlock . The
data is related to no particular user. All users see the same data. For instance, the definition of a problem.

ONE: Identifies data particular to a single user of the XBlock .
For instance, a student’s answer to a problem.

ALL: Identifies data aggregated while the block is used by many users.
The data is related to all the users. For instance, a count of how many students have answered a question,
or a histogram of the answers submitted by all students.

classmethod scopes()

Return a list of valid/understood class scopes. Why do we need this? I believe it is not used anywhere.

class xblock.fields.XMLString(help=None, default=fields.UNSET,
scope=ScopeBase(user=UserScope.NONE, block=BlockScope.DEFINITION,
name='content'), display_name=None, values=None, enforce_type=False,
xml_node=False, force_export=False, **kwargs)

A field class for representing an XML string.

The value, as loaded or enforced, can either be None or a basestring instance. If it is a basestring instance, it
must be valid XML. If it is not valid XML, an lxml.etree.XMLSyntaxError will be raised.

enforce_type(value)
Coerce the type of the value, if necessary

Called on field sets to ensure that the stored type is consistent if the field was initialized with en-
force_type=True

This must not have side effects, since it will be executed to trigger a DeprecationWarning even if en-
force_type is disabled

to_json(value)
Serialize the data, ensuring that it is valid XML (or None).

Raises an lxml.etree.XMLSyntaxError if it is a basestring but not valid XML.

class xblock.field_data.FieldData

An interface allowing access to an XBlock’s field values indexed by field names.

default(block, name)
Get the default value for this field which may depend on context or may just be the field’s global default.
The default behavior is to raise KeyError which will cause the caller to return the field’s global default.

Parameters

• block (XBlock) – the block containing the field being defaulted

• name (str) – the field’s name

27

XBlock API Guide

abstract delete(block, name)
Reset the value of the field named name to the default for XBlock block.

Parameters

• block (XBlock) – block to modify

• name (str) – field name to delete

abstract get(block, name)
Retrieve the value for the field named name for the XBlock block.

If no value is set, raise a KeyError.

The value returned may be mutated without modifying the backing store.

Parameters

• block (XBlock) – block to inspect

• name (str) – field name to look up

has(block, name)
Return whether or not the field named name has a non-default value for the XBlock block.

Parameters

• block (XBlock) – block to check

• name (str) – field name

abstract set(block, name, value)
Set the value of the field named name for XBlock block.

value may be mutated after this call without affecting the backing store.

Parameters

• block (XBlock) – block to modify

• name (str) – field name to set

• value – value to set

set_many(block, update_dict)
Update many fields on an XBlock simultaneously.

Parameters

• block (XBlock) – the block to update

• update_dict (dict) – A map of field names to their new values

28 Chapter 4. Fields API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

CHAPTER

FIVE

RUNTIME API

Machinery to make the common case easy when building new runtimes

xblock.runtime.DbModel

alias of KvsFieldData

class xblock.runtime.DictKeyValueStore(storage=None)
A KeyValueStore that stores everything into a Python dictionary.

delete(key)
Deletes key from storage.

get(key)
Reads the value of the given key from storage.

has(key)
Returns whether or not key is present in storage.

set(key, value)
Sets key equal to value in storage.

set_many(update_dict)
For each (key, value) in update_dict, set key to value in storage.

The default implementation brute force updates field by field through set which may be inefficient for any
runtimes doing persistence operations on each set. Such implementations will want to override this method.

Update_dict
field_name, field_value pairs for all cached changes

class xblock.runtime.IdGenerator

An abstract object that creates usage and definition ids

abstract create_aside(definition_id, usage_id, aside_type)
Make a new aside definition and usage ids, indicating an XBlockAside of type aside_type commenting on
an XBlock usage usage_id

Returns
(aside_definition_id, aside_usage_id)

abstract create_definition(block_type, slug=None)
Make a definition, storing its block type.

If slug is provided, it is a suggestion that the definition id incorporate the slug somehow.

Returns the newly-created definition id.

29

XBlock API Guide

abstract create_usage(def_id)
Make a usage, storing its definition id.

Returns the newly-created usage id.

class xblock.runtime.IdReader

An abstract object that stores usages and definitions.

abstract get_aside_type_from_definition(aside_id)
Retrieve the XBlockAside aside_type associated with this aside definition id.

Parameters
aside_id – The definition id of the XBlockAside.

Returns
The aside_type of the aside.

abstract get_aside_type_from_usage(aside_id)
Retrieve the XBlockAside aside_type associated with this aside usage id.

Parameters
aside_id – The usage id of the XBlockAside.

Returns
The aside_type of the aside.

abstract get_block_type(def_id)
Retrieve the block_type of a particular definition

Parameters
def_id – The id of the definition to query

Returns
The block_type of the definition

abstract get_definition_id(usage_id)
Retrieve the definition that a usage is derived from.

Parameters
usage_id – The id of the usage to query

Returns
The definition_id the usage is derived from

abstract get_definition_id_from_aside(aside_id)
Retrieve the XBlock definition_id associated with this aside definition id.

Parameters
aside_id – The definition id of the XBlockAside.

Returns
The definition_id of the xblock the aside is commenting on.

abstract get_usage_id_from_aside(aside_id)
Retrieve the XBlock usage_id associated with this aside usage id.

Parameters
aside_id – The usage id of the XBlockAside.

Returns
The usage_id of the usage the aside is commenting on.

30 Chapter 5. Runtime API

XBlock API Guide

class xblock.runtime.KeyValueStore

The abstract interface for Key Value Stores.

class Key(scope, user_id, block_scope_id, field_name, block_family='xblock.v1')
Keys are structured to retain information about the scope of the data. Stores can use this information
however they like to store and retrieve data.

Create new instance of Key(scope, user_id, block_scope_id, field_name, block_family)

default(key)
Returns the context relevant default of the given key or raise KeyError which will result in the field’s global
default.

abstract delete(key)
Deletes key from storage.

abstract get(key)
Reads the value of the given key from storage.

abstract has(key)
Returns whether or not key is present in storage.

abstract set(key, value)
Sets key equal to value in storage.

set_many(update_dict)
For each (key, value) in update_dict, set key to value in storage.

The default implementation brute force updates field by field through set which may be inefficient for any
runtimes doing persistence operations on each set. Such implementations will want to override this method.

Update_dict
field_name, field_value pairs for all cached changes

class xblock.runtime.KvsFieldData(kvs, **kwargs)
An interface mapping value access that uses field names to one that uses the correct scoped keys for the underlying
KeyValueStore

default(block, name)
Ask the kvs for the default (default implementation which other classes may override).

Parameters

• block (XBlock) – block containing field to default

• name – name of the field to default

delete(block, name)
Reset the value of the field named name to the default

get(block, name)
Retrieve the value for the field named name.

If a value is provided for default, then it will be returned if no value is set

has(block, name)
Return whether or not the field named name has a non-default value

set(block, name, value)
Set the value of the field named name

31

XBlock API Guide

set_many(block, update_dict)
Update the underlying model with the correct values.

class xblock.runtime.MemoryIdManager

A simple dict-based implementation of IdReader and IdGenerator.

ASIDE_DEFINITION_ID

alias of MemoryAsideDefinitionId

ASIDE_USAGE_ID

alias of MemoryAsideUsageId

clear()

Remove all entries.

create_aside(definition_id, usage_id, aside_type)
Create the aside.

create_definition(block_type, slug=None)
Make a definition, storing its block type.

create_usage(def_id)
Make a usage, storing its definition id.

get_aside_type_from_definition(aside_id)
Get an aside’s type from its definition id.

get_aside_type_from_usage(aside_id)
Get an aside’s type from its usage id.

get_block_type(def_id)
Get a block_type by its definition id.

get_definition_id(usage_id)
Get a definition_id by its usage id.

get_definition_id_from_aside(aside_id)
Extract the original xblock’s definition_id from an aside’s definition_id.

get_usage_id_from_aside(aside_id)
Extract the usage_id from the aside’s usage_id.

class xblock.runtime.Mixologist(mixins)
Provides a facility to dynamically generate classes with additional mixins.

Parameters
mixins (iterable of class) – Classes to mixin or names of classes to mixin.

mix(cls)
Returns a subclass of cls mixed with self.mixins.

Parameters
cls (class) – The base class to mix into

class xblock.runtime.NullI18nService

A simple implementation of the runtime “i18n” service.

32 Chapter 5. Runtime API

XBlock API Guide

get_javascript_i18n_catalog_url(block)
Return the URL to the JavaScript i18n catalog file.

Parameters
block (XBlock) – The block that is requesting the URL.

This method returns None in NullI18nService. When implemented in a runtime, it should return the URL
to the JavaScript i18n catalog so it can be loaded in frontends.

strftime(dtime, format)
Locale-aware strftime, with format short-cuts.

property ugettext

Dispatch to the appropriate gettext method to handle text objects.

Note that under python 3, this uses gettext(), while under python 2, it uses ugettext(). This should not be
used with bytestrings.

property ungettext

Dispatch to the appropriate ngettext method to handle text objects.

Note that under python 3, this uses ngettext(), while under python 2, it uses ungettext(). This should not be
used with bytestrings.

class xblock.runtime.ObjectAggregator(*objects)
Provides a single object interface that combines many smaller objects.

Attribute access on the aggregate object acts on the first sub-object that has that attribute.

class xblock.runtime.RegexLexer(*toks)
Split text into lexical tokens based on regexes.

lex(text)
Iterator that tokenizes text and yields up tokens as they are found

class xblock.runtime.Runtime(id_reader, id_generator, field_data=None, mixins=(), services=None,
default_class=None, select=None)

Access to the runtime environment for XBlocks.

Parameters

• id_reader (IdReader) – An object that allows the Runtime to map between usage_ids,
definition_ids, and block_types.

• id_generator (IdGenerator) – The IdGenerator to use for creating ids when importing
XML or loading XBlockAsides.

• field_data (FieldData) – The FieldData to use by default when constructing an
XBlock from this Runtime.

• mixins (tuple) – Classes that should be mixed in with every XBlock created by this Run-
time.

• services (dict) – Services to make available through the service()method. There’s no
point passing anything here if you are overriding service() in your sub-class.

• default_class (class) – The default class to use if a class can’t be found for a particular
block_type when loading an XBlock .

• select – A function to select from one or more XBlock-like subtypes found when calling
XBlock.load_class() or XBlockAside.load_class() to resolve a block_type.

33

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict

XBlock API Guide

add_block_as_child_node(block, node)
Export block as a child node of node.

add_node_as_child(block, node)
Called by XBlock.parse_xml to treat a child node as a child block.

applicable_aside_types(block)
Return the set of applicable aside types for this runtime and block. This method allows the runtime to filter
the set of asides it wants to support or to provide even block-level or block_type level filtering. We may
extend this in the future to also take the user or user roles.

construct_xblock(block_type, scope_ids, field_data=None, *args, **kwargs)
Construct a new xblock of the type identified by block_type, passing *args and **kwargs into __init__.

construct_xblock_from_class(cls, scope_ids, field_data=None, *args, **kwargs)
Construct a new xblock of type cls, mixing in the mixins defined for this application.

create_aside(block_type, keys)
The aside version of construct_xblock: take a type and key. Return an instance

export_to_xml(block, xmlfile)
Export the block to XML, writing the XML to xmlfile.

property field_data

Access the FieldData passed in the constructor.

Deprecated in favor of a ‘field-data’ service.

get_aside(aside_usage_id)
Create an XBlockAside in this runtime.

The aside_usage_id is used to find the Aside class and data.

get_aside_of_type(block, aside_type)
Return the aside of the given aside_type which might be decorating this block.

Parameters

• block (XBlock) – The block to retrieve asides for.

• aside_type (str) – the type of the aside

get_asides(block)
Return instances for all of the asides that will decorate this block.

Parameters
block (XBlock) – The block to render retrieve asides for.

Returns
List of XBlockAside instances

get_block(usage_id, for_parent=None)
Create an XBlock instance in this runtime.

The usage_id is used to find the XBlock class and data.

handle(block, handler_name, request, suffix='')
Handles any calls to the specified handler_name.

Provides a fallback handler if the specified handler isn’t found.

Parameters

34 Chapter 5. Runtime API

XBlock API Guide

• handler_name – The name of the handler to call

• request (webob.Request) – The request to handle

• suffix – The remainder of the url, after the handler url prefix, if available

abstract handler_url(block, handler_name, suffix='', query='', thirdparty=False)
Get the actual URL to invoke a handler.

handler_name is the name of your handler function. Any additional portion of the url will be passed as the
suffix argument to the handler.

The return value is a complete absolute URL that will route through the runtime to your handler.

Parameters

• block – The block to generate the url for

• handler_name – The handler on that block that the url should resolve to

• suffix – Any path suffix that should be added to the handler url

• query – Any query string that should be added to the handler url (which should not include
an initial ? or &)

• thirdparty – If true, create a URL that can be used without the user being logged in.
This is useful for URLs to be used by third-party services.

layout_asides(block, context, frag, view_name, aside_frag_fns)
Execute and layout the aside_frags wrt the block’s frag. Runtimes should feel free to override this method
to control execution, place, and style the asides appropriately for their application

This default method appends the aside_frags after frag. If you override this, you must call wrap_aside
around each aside as per this function.

Parameters

• block (XBlock) – the block being rendered

• frag (str) – The HTML result from rendering the block

• aside_frag_fns (list((aside, aside_fn))) – The asides and closures for render-
ing to call

load_aside_type(aside_type)
Returns a subclass of XBlockAside that corresponds to the specified aside_type.

load_block_type(block_type)
Returns a subclass of XBlock that corresponds to the specified block_type.

abstract local_resource_url(block, uri)
Get the URL to load a static resource from an XBlock.

block is the XBlock that owns the resource.

uri is a relative URI to the resource. The XBlock class’s
get_local_resource(uri) method should be able to open the resource identified by this uri.

Typically, this function uses open_local_resource defined on the XBlock class, which by default will only
allow resources from the “public/” directory of the kit. Resources must be placed in “public/” to be suc-
cessfully served with this URL.

The return value is a complete absolute URL which will locate the resource on your runtime.

35

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

XBlock API Guide

parse_xml_file(fileobj)
Parse an open XML file, returning a usage id.

parse_xml_string(xml)
Parse a string of XML, returning a usage id.

abstract publish(block, event_type, event_data)
Publish an event.

For example, to participate in the course grade, an XBlock should set has_score to True, and should publish
a grade event whenever the grade changes.

In this case the event_type would be grade, and the event_data would be a dictionary of the following form:

{
'value': <number>,
'max_value': <number>,

}

The grade event represents a grade of value/max_value for the current user.

block is the XBlock from which the event originates.

query(block)
Query for data in the tree, starting from block.

Returns a Query object with methods for navigating the tree and retrieving information.

querypath(block, path)
An XPath-like interface to query.

render(block, view_name, context=None)
Render a block by invoking its view.

Finds the view named view_name on block. The default view will be used if a specific view hasn’t be
registered. If there is no default view, an exception will be raised.

The view is invoked, passing it context. The value returned by the view is returned, with possible modifi-
cations by the runtime to integrate it into a larger whole.

render_asides(block, view_name, frag, context)
Collect all of the asides’ add ons and format them into the frag. The frag already has the given block’s
rendering.

render_child(child, view_name=None, context=None)
A shortcut to render a child block.

Use this method to render your children from your own view function.

If view_name is not provided, it will default to the view name you’re being rendered with.

Returns the same value as render().

render_children(block, view_name=None, context=None)
Render a block’s children, returning a list of results.

Each child of block will be rendered, just as render_child() does.

Returns a list of values, each as provided by render().

36 Chapter 5. Runtime API

XBlock API Guide

abstract resource_url(resource)
Get the URL for a static resource file.

resource is the application local path to the resource.

The return value is a complete absolute URL that will locate the resource on your runtime.

save_block(block)
Finalize/commit changes for the field data from the specified block. Called at the end of an XBlock’s save()
method. Runtimes may ignore this as generally the field data implementation is responsible for persisting
changes.

(The main use case here is a runtime and field data implementation that want to store field data in XML
format - the only way to correctly serialize a block to XML is to ask the block to serialize itself all at once,
so such implementations cannot persist changes on a field-by-field basis.)

Parameters
block (XBlock) – the block being saved

service(block, service_name)
Return a service, or None.

Services are objects implementing arbitrary other interfaces. They are requested by agreed-upon names,
see [XXX TODO] for a list of possible services. The object returned depends on the service requested.

XBlocks must announce their intention to request services with the XBlock.needs or XBlock.wants decora-
tors. Use needs if you assume that the service is available, or wants if your code is flexible and can accept
a None from this method.

Runtimes can override this method if they have different techniques for finding and delivering services.

Parameters

• block (XBlock) – this block’s class will be examined for service decorators.

• service_name (str) – the name of the service requested.

Returns
An object implementing the requested service, or None.

property user_id

Access the current user ID.

Deprecated in favor of a ‘user’ service.

wrap_aside(block, aside, view, frag, context)
Creates a div which identifies the aside, points to the original block, and writes out the json_init_args into
a script tag.

The default implementation creates a frag to wraps frag w/ a div identifying the xblock. If you have
javascript, you’ll need to override this impl

wrap_xblock(block, view, frag, context)
Creates a div which identifies the xblock and writes out the json_init_args into a script tag.

If there’s a wrap_child method, it calls that with a deprecation warning.

The default implementation creates a frag to wraps frag w/ a div identifying the xblock. If you have
javascript, you’ll need to override this impl

37

https://docs.python.org/3/library/stdtypes.html#str

XBlock API Guide

38 Chapter 5. Runtime API

CHAPTER

SIX

PLUGINS API

class xblock.plugin.Plugin

Base class for a system that uses entry_points to load plugins.

Implementing classes are expected to have the following attributes:

entry_point: The name of the entry point to load plugins from.

classmethod load_class(identifier, default=None, select=None)
Load a single class specified by identifier.

If identifier specifies more than a single class, and select is not None, then call select on the list of en-
try_points. Otherwise, choose the first one and log a warning.

If default is provided, return it if no entry_point matching identifier is found. Otherwise, will raise a
PluginMissingError

If select is provided, it should be a callable of the form:

def select(identifier, all_entry_points):
...
return an_entry_point

The all_entry_points argument will be a list of all entry_points matching identifier that were found, and
select should return one of those entry_points to be loaded. select should raise PluginMissingError if no
plugin is found, or AmbiguousPluginError if too many plugins are found

classmethod load_classes(fail_silently=True)
Load all the classes for a plugin.

Produces a sequence containing the identifiers and their corresponding classes for all of the available in-
stances of this plugin.

fail_silently causes the code to simply log warnings if a plugin cannot import. The goal is to be able to use
part of libraries from an XBlock (and thus have it installed), even if the overall XBlock cannot be used (e.g.
depends on Django in a non-Django application). There is disagreement about whether this is a good idea,
or whether we should see failures early (e.g. on startup or first page load), and in what contexts. Hence, the
flag.

classmethod register_temp_plugin(class_, identifier=None, dist='xblock')
Decorate a function to run with a temporary plugin available.

Use it like this in tests:

@register_temp_plugin(MyXBlockClass):
def test_the_thing():

Here I can load MyXBlockClass by name.

39

XBlock API Guide

class xblock.reference.plugins.Filesystem(help=None, default=fields.UNSET,
scope=ScopeBase(user=UserScope.NONE,
block=BlockScope.DEFINITION, name='content'),
display_name=None, values=None, enforce_type=False,
xml_node=False, force_export=False, **kwargs)

An enhanced pyfilesystem.

This returns a file system provided by the runtime. The file system has two additional methods over a normal
pyfilesytem:

• get_url allows it to return a URL for a file

• expire allows it to create files which may be garbage collected after a preset period. edx-platform and
xblock-sdk do not currently garbage collect them, however.

More information can be found at: https://github.com/openedx/django-pyfs

The major use cases for this are storage of large binary objects, pregenerating per-student data (e.g. pylab plots),
and storing data which should be downloadable (for example, serving will typically be faster
through this than serving that up through XBlocks views.

40 Chapter 6. Plugins API

https://github.com/openedx/django-pyfs

CHAPTER

SEVEN

EXCEPTIONS API

Module for all xblock exception classes

exception xblock.exceptions.DisallowedFileError

Raised by XBlock.open_local_resource() or XBlockAside.open_local_resource().

exception xblock.exceptions.FieldDataDeprecationWarning

Warning for use of deprecated _field_data accessor

exception xblock.exceptions.InvalidScopeError(invalid_scope, valid_scopes=None)
Raised to indicated that operating on the supplied scope isn’t allowed by a KeyValueStore

exception xblock.exceptions.JsonHandlerError(status_code, message)
Raised by a function decorated with XBlock.json_handler to indicate that an error response should be returned.

get_response(**kwargs)
Returns a Response object containing this object’s status code and a JSON object containing the key “error”
with the value of this object’s error message in the body. Keyword args are passed through to the Response.

exception xblock.exceptions.KeyValueMultiSaveError(saved_field_names)
Raised to indicated an error in saving multiple fields in a KeyValueStore

Create a new KeyValueMultiSaveError

saved_field_names - an iterable of field names (strings) that were successfully saved before the exception occurred

exception xblock.exceptions.NoSuchDefinition

Raised by IdReader.get_block_type() if the definition doesn’t exist.

exception xblock.exceptions.NoSuchHandlerError

Raised to indicate that the requested handler was not found.

exception xblock.exceptions.NoSuchServiceError

Raised to indicate that a requested service was not found.

exception xblock.exceptions.NoSuchUsage

Raised by IdReader.get_definition_id() if the usage doesn’t exist.

exception xblock.exceptions.NoSuchViewError(block, view_name)
Raised to indicate that the view requested was not found.

Create a new NoSuchViewError

Parameters

• block – The XBlock without a view

• view_name – The name of the view that couldn’t be found

41

XBlock API Guide

exception xblock.exceptions.UserIdDeprecationWarning

Warning for use of deprecated user_id accessor

exception xblock.exceptions.XBlockNotFoundError(usage_id)
Raised to indicate that an XBlock could not be found with the requested usage_id

exception xblock.exceptions.XBlockParseException

Raised if parsing the XBlock olx fails.

exception xblock.exceptions.XBlockSaveError(saved_fields, dirty_fields, message=None)
Raised to indicate an error in saving an XBlock

Create a new XBlockSaveError

saved_fields - a set of fields that were successfully saved before the error occurred dirty_fields - a set of fields
that were left dirty after the save

42 Chapter 7. Exceptions API

CHAPTER

EIGHT

OPEN EDX XBLOCK TUTORIAL

8.1 Introduction

The Open edX XBlock Tutorial is created using RST files and Sphinx. You, the user community, can help update and
revise this documentation project on GitHub.

https://github.com/openedx/XBlock/tree/master/docs/xblock-tutorial/

The Open edX community welcomes contributions from other Open edX community members. You can find guidelines
for how to contribute to Open edX documentation in the GitHub openedx/docs.openedx.org repository - although
note that these specific docs are authored in the openedx/XBlock repository.

8.1.1 Other Open edX Resources

The docs.openedx.org site has numerous resources for learning about the Open edX platform. Specifically, there are
pages of information that are targeted at the following audiences:

• Users of named releases

• Educators (those using the Open edX platform for teaching)

• Course Operators (those engaged in the mechanics of running an Open edX course)

• Site Operators

• Developers

• Documentors

• Translators

8.2 XBlock Overview

8.2.1 Introduction to XBlocks

This section introduces XBlocks.

• Overview

• XBlock Independence and Interoperability

• XBlocks Compared to Web Applications

43

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
https://github.com/openedx/XBlock/tree/master/docs/xblock-tutorial/
https://github.com/openedx/docs.openedx.org#readme
https://docs.openedx.org/en/latest/
https://docs.openedx.org/en/latest/community/release_notes/index.html
https://docs.openedx.org/en/latest/educators/index.html
https://docs.openedx.org/en/latest/course_ops/index.html
https://docs.openedx.org/en/latest/site_ops/index.html
https://docs.openedx.org/en/latest/developers/index.html
https://docs.openedx.org/en/latest/documentors/index.html
https://docs.openedx.org/en/latest/translators/index.html

XBlock API Guide

• XBlock API and Runtimes

• XBlocks and the Open edX Platform

• XBlocks for Developers

Overview

As a developer, you build XBlocks that course teams use to create independent course components that work seamlessly
with other components in an online course.

For example, you can build XBlocks to represent individual problems or pieces of text or HTML content. Furthermore,
like Legos, XBlocks are composable; you can build XBlocks to represent larger structures such as lessons, sections,
and entire courses.

A primary advantage to XBlocks is that they are sharable. The code you write can be deployed in any instance of the
Open edX Platform or other XBlock runtime application, then used by any course team using that system.

In educational applications, XBlocks can be used to represent individual problems, web-formatted text and videos, in-
teractive simulations and labs, or collaborative learning experiences. Furthermore, XBlocks are composable, allowing
an XBlock developer to control the display of other XBlocks to compose lessons, sections, and entire courses.

XBlock Independence and Interoperability

You must design your XBlock to meet two goals.

• The XBlock must be independent of other XBlocks. Course teams must be able to use the XBlock without
depending on other XBlocks.

• The XBlock must work together with other XBlocks. Course teams must be able to combine different XBlocks
in flexible ways.

XBlocks Compared to Web Applications

XBlocks are like miniature web applications: they maintain state in a storage layer, render themselves through views,
and process user actions through handlers.

XBlocks differ from web applications in that they render only a small piece of a complete web page.

Like HTML <div> tags, XBlocks can represent components as small as a paragraph of text, a video, or a multiple
choice input field, or as large as a section, a chapter, or an entire course.

XBlock API and Runtimes

Any web application can be an XBlock runtime by implementing the XBlock API. Note that the XBlock API is not a
RESTful API. XBlock runtimes can compose web pages out of XBlocks that were developed by programmers who do
not need to know anything about the other components that a web page might be using or displaying.

44 Chapter 8. Open edX XBlock Tutorial

XBlock API Guide

XBlocks and the Open edX Platform

The Open edX Platform is an XBlock runtime and the Open edX community currently provides most of the support
for the development of the XBlock library and specification. Programmers who use Tutor or the edx-platform devstack
instead of the xblock-sdk to develop an XBlock should make sure that their XBlock is fully compliant with the XBlock
specification before deploying to other XBlock runtimes. More specifically, XBlocks should package any services
provided by edx-platform that a different XBlock compliant runtime might not provide.

The Open edX Platform currently has a large suite of XBlocks built into its primary repository that are available to
course developers. Those XBlocks include HTML content, videos, and interactive problems. The Open edX Platform
also includes many specialized XBlocks such as the Google Drive file tool and Open Response Assessments. For more
information, see XBlocks and the edX Platform.

XBlocks for Developers

Developers can select from functionality developed by the Open edX community by installing an XBlock on their Open
edX instance. Developers can integrate new or propriety functionality for use in XBlock runtimes by developing a new
XBlock using the supported XBlock API.

XBlocks are like miniature web applications: they maintain state in a storage layer, render themselves through views,
and process user actions through handlers. XBlocks differ from web applications in that they render only a small piece
of a complete web page. Like HTML <div> tags, XBlocks can represent components as small as a paragraph of text,
a video, or a multiple choice input field, or as large as a section, a chapter, or an entire course.

Prerequisites

This tutorial is for developers who are new to XBlock. To use this tutorial, you should have basic knowledge of the
following technologies.

• Python

• JavaScript

• HTML and CSS

• Python VirtualEnv

• Git

XBlock Resources

This tutorial is meant to guide developers through the process of creating an XBlock, and to explain the concepts and
anatomy of XBlocks.

The XBlock SDK supports the creation of new XBlocks. Developers should also see the Open edX XBlock API Guide.

8.2. XBlock Overview 45

https://edx.readthedocs.io/projects/edx-partner-course-staff/en/latest/exercises_tools/google_docs.html
https://edx.readthedocs.io/projects/edx-partner-course-staff/en/latest/exercises_tools/open_response_assessments/OpenResponseAssessments.html
http://www.virtualenv.org/en/latest/
https://help.github.com/articles/set-up-git
https://github.com/openedx/xblock-sdk

XBlock API Guide

XBlock Independence and Interoperability

You must design your XBlock to meet two criteria.

• The XBlock must be independent of other XBlocks. Course teams must be able to use the XBlock without using
other XBlocks.

• The XBlock must work together with other XBlocks. Course teams must be able to combine different XBlocks
in flexible ways.

8.2.2 XBlock Examples

This section shows example XBlocks. These examples are meant to demonstrate simple XBlocks and are not meant to
showcase the range of capabilities.

• Google Drive & Calendar XBlock

• Examples in the XBlock SDK

Google Drive & Calendar XBlock

Course teams can use the Google Drive and Calendar XBlock to embed Google documents and calendars in their
courseware.

The Google Drive and Calendar XBlock is created and stored in a separate GitHub repository. You can explore the
contents of this XBlock repository to learn how it is structured and developed.

Instructions are provided so that you can install the XBlock on your Open edX system. For more information, see
XBlocks and the edX Platform.

46 Chapter 8. Open edX XBlock Tutorial

https://github.com/openedx/xblock-google-drive

XBlock API Guide

Adding the XBlock to Courseware

When the Google Drive and Calendar XBlock is installed on an Open edX instance, course teams can add Google
documents and calendars to courseware.

For example, in Studio, course teams can add and configure a Google calendar component.

Course teams or developers can also add a Google calendar using OLX (open learning XML).

<google-calendar
url_name="4115e717366045eaae7764b2e1f25e4c"
calendar_id="abcdefghijklmnop1234567890@group.calendar.google.com"
default_view="1"
display_name="Class Schedule"

/>

For more information, see Google calendar tool and Google Drive file tool in Building and Running an Open edX
Course.

8.2. XBlock Overview 47

https://edx.readthedocs.io/projects/edx-partner-course-staff/en/latest/exercises_tools/google_calendar.html
https://edx.readthedocs.io/projects/edx-partner-course-staff/en/latest/exercises_tools/google_docs.html

XBlock API Guide

Viewing the XBlock

When course teams use the Google Drive and Calendar XBlock, learners can view the referenced Google documents
and calendars directly in their the courseware.

Examples in the XBlock SDK

The XBlock SDK that you use in this tutorial also contains several example XBlocks.

We will use the Thumbs XBlock in the sections Customize Your XBlock and Anatomy of an XBlock.

You can explore the other example XBlocks in the XBlock SDK.

• View Counter XBlock

• Problem XBlock

• Slider XBlock

• Several Content XBlocks

• Several Structure XBlocks

48 Chapter 8. Open edX XBlock Tutorial

https://github.com/openedx/xblock-sdk
https://github.com/openedx/xblock-sdk/tree/master/sample_xblocks/thumbs
https://github.com/openedx/xblock-sdk/blob/master/sample_xblocks/basic/view_counter.py
https://github.com/openedx/xblock-sdk/blob/master/sample_xblocks/basic/problem.py
https://github.com/openedx/xblock-sdk/blob/master/sample_xblocks/basic/slider.py
https://github.com/openedx/xblock-sdk/blob/master/sample_xblocks/basic/content.py
https://github.com/openedx/xblock-sdk/blob/master/sample_xblocks/basic/structure.py

XBlock API Guide

8.3 Build an XBlock: Quick Start

This part of the tutorial guides you through building an XBlock. At the end, you will have the skeleton of an XBlock
that you can then customize.

To continue, see the following sections.

8.3.1 Install XBlock Prerequisites

To build an XBlock, you must have the following tools on your computer.

• Python 3.8

• Git

• A Virtual Environment

Python 3.8

To run the a virtual environment and the XBlock SDK, and to build an XBlock, you must have Python 3.8 installed on
your computer.

Download Python for your operating system and follow the installation instructions.

Git

Open edX repositories, including XBlock and the XBlock SDK, are stored on GitHub.

To build your own XBlock, and to deploy it later, you must use Git for source control.

If you do not have Git installed, or you are are unfamiliar with the tool, see the GitHub Help.

A Virtual Environment

It is recommended that you develop your XBlock using a Python virtual environment. A virtual environment is a tool
to keep the dependencies required by different projects in separate places.

With a virtual environment you can manage the requirements of your XBlock in a separate location so they do not
conflict with requirements of other Python applications you might need.

The instructions and examples in this tutorial use VirtualEnv and VirtualEnvWrapper to build XBlocks. You can also
use PyEnv.

After you have installed Python 3.8, follow the VirtualEnv Installation instructions.

For information on creating the virtual environment for your XBlock, see Create and Activate the Virtual Environment.

8.3. Build an XBlock: Quick Start 49

https://www.python.org/downloads/release/python-386/
https://help.github.com/articles/set-up-git
http://www.virtualenv.org/en/latest/
http://virtualenvwrapper.readthedocs.io/en/latest
https://github.com/yyuu/pyenv
https://virtualenv.pypa.io/en/latest/installation.html

XBlock API Guide

8.3.2 Set Up the XBlock Software Development Kit

Before you continue, make sure that you are familiar with the subjects in the Install XBlock Prerequisites section.

When you have installed all prerequisites, you are ready to set up the XBlock SDK in a virtual environment. To do this,
complete the following steps.

• Create a Directory for XBlock Work

• Create and Activate the Virtual Environment

• Clone the XBlock Software Development Kit

Create a Directory for XBlock Work

It is recommended that you create a directory in which to store all your XBlock work, including a virtual environment,
the XBlock SDK, and the XBlocks you develop.

1. At the command prompt, run the following command to create the directory.

$ mkdir xblock_development

2. Change directories to the xblock_development directory.

$ cd xblock_development

The rest of your work will be from this directory.

Create and Activate the Virtual Environment

You must have a virtual environment tool installed on your computer. For more information, see Install XBlock Prereq-
uisites. If you have multiple Python versions on your machine, see managing different Python versions with virtualenv.

Then create the virtual environment in your xblock_development directory.

1. At the command prompt in xblock_development, run the following command to create the virtual environ-
ment.

$ virtualenv xblock-env

2. Run the following command to activate the virtual environment.

$ source xblock-env/bin/activate

When the virtual environment is activated, the command prompt shows the name of the virtual directory in
parentheses.

(xblock-env) $

50 Chapter 8. Open edX XBlock Tutorial

https://github.com/openedx/xblock-sdk
https://saturncloud.io/blog/how-to-use-different-python-versions-with-virtualenv/

XBlock API Guide

Clone the XBlock Software Development Kit

The XBlock SDK is a Python application you use to help you build new XBlocks. The XBlock SDK contains three
main components:

• An XBlock creation tool that builds the skeleton of a new XBlock.

• An XBlock runtime for viewing and testing your XBlocks during development.

• Sample XBlocks that you can use as the starting point for new XBlocks, and for your own learning.

After you create and activate the virtual environment, you clone the XBlock SDK and install its requirements. To do
this, complete the following steps at a command prompt.

1. In the xblock_development directory, run the following command to clone the XBlock SDK repository from
GitHub.

(xblock-env) $ git clone https://github.com/openedx/xblock-sdk.git

2. In the same directory, create an empty directory called var.

(xblock-env) $ mkdir var

3. Run the following command to change to the xblock-sdk directory.

(xblock-env) $ cd xblock-sdk

4. Run the following commands to install the XBlock SDK requirements.

(xblock-env) $ make install

5. Run the following command to return to the xblock_development directory, where you will perform the rest
of your work.

(xblock-env) $ cd ..

When the requirements are installed, you are in the xblock_development directory, which contains the var,
xblock-env, and xblock-sdk subdirectories. You can now create your first XBlock.

8.3.3 Create Your First XBlock

Before you continue, make sure that you have set up the XBlock SDK . You then create the XBlock and deploy it in the
XBlock SDK.

• Create an XBlock

• Install the XBlock

• Create the SQLite Database

• Run the XBlock SDK Server

• Next Steps

8.3. Build an XBlock: Quick Start 51

https://github.com/openedx/xblock-sdk

XBlock API Guide

Create an XBlock

You use the XBlock SDK to create skeleton files for an XBlock. To do this, follow these steps at a command prompt.

1. Change to the xblock_development directory, which contains the var, xblock-env, and xblock-sdk sub-
directories.

2. Run the following command to create the skeleton files for the XBlock.

(xblock-env) $ xblock-sdk/bin/workbench-make-xblock

Instructions in the command window instruct you to determine a short name and a class name. Follow the
guidelines in the command window to determine the names that you want to use.

You will be prompted for two pieces of information:

* Short name: a single word, all lower-case, for directory and file
names. For a hologram 3-D XBlock, you might choose "holo3d".

* Class name: a valid Python class name. It's best if this ends with
"XBlock", so for our hologram XBlock, you might choose
"Hologram3dXBlock".

Once you specify those two names, a directory is created in the
``xblock_development`` directory containing the new project.

If you don't want to create the project here, or you enter a name
incorrectly, type Ctrl-C to stop the creation script. If you don't want
the resulting project, delete the directory it created.

3. At the command prompt, enter the Short Name you selected for your XBlock.

$ Short name: myxblock

4. At the command prompt, enter the Class name you selected for your XBlock.

$ Class name: MyXBlock

The skeleton files for the XBlock are created in the myxblock directory. For more information about the XBlock files,
see Anatomy of an XBlock.

Install the XBlock

After you create the XBlock, you install it in the XBlock SDK.

In the xblock_development directory, use pip to install your XBlock.

(xblock-env) $ pip install -e myxblock

You can then test your XBlock in the XBlock SDK.

52 Chapter 8. Open edX XBlock Tutorial

XBlock API Guide

Create the SQLite Database

Before running the XBlock SDK the first time, you must create the SQLite database.

1. In the xblock_development directory, run the following command to create the database and the tables.

(xblock-env) $ python xblock-sdk/manage.py migrate

Run the XBlock SDK Server

To see the web interface of the XBlock SDK, you must run the SDK server.

In the xblock_development directory, run the following command to start the server.

(xblock-env) $ python xblock-sdk/manage.py runserver

Note: If you do not specify a port, the XBlock SDK server uses port 8000. To use a different port, specify it in the
runserver command.

Then test that the XBlock SDK is running. In a browser, go to http://localhost:8000. You should see the following
page.

8.3. Build an XBlock: Quick Start 53

XBlock API Guide

The page shows the XBlocks installed automatically with the XBlock SDK. Note that the page also shows the
MyXBlock XBlock that you created in Create Your First XBlock.

Get Help for the XBlock SDK Server

To get help for the XBlock SDK runserver command, run the following command.

(xblock-env) $ python xblock-sdk/manage.py help

The command window lists and describes the available commands.

54 Chapter 8. Open edX XBlock Tutorial

XBlock API Guide

Next Steps

You have now completed the Getting Started section of the XBlock tutorial. In the next sections, you will learn how to
use the XBlock SDK , about the anatomy of an XBlock, and how to customize your new XBlock.

8.3.4 What Browsers Do I Need to Support?

For the latest information on browser support for the Open edX platform, see Open edX Browser Support.

8.4 Anatomy of an XBlock

This part of the tutorial explains the XBlock skeleton, and uses examples from the Thumbs XBlock that is installed
with the XBlock SDK.

The Thumbs XBlock enables learners to vote up or down. The Thumbs XBlock keeps track of vote totals.

For information about making the XBlock that you created function like the example Thumbs XBlock, see Customize
Your XBlock.

8.4.1 The XBlock Python File

This section of the tutorial walks through the Python file, thumbs.py, for the Thumbs XBlock example in the XBlock
SDK.

If you completed the steps in Build an XBlock: Quick Start, you can find this file locally at xblock_development/
xblock-sdk/sample_xblocks/thumbs/thumbs.py.

In the XBlock Python file, you define fields, views, handlers, and workbench scenarios.

• Thumb XBlock Fields

• Thumb XBlock Student View

• Thumb XBlock Vote Handler

Thumb XBlock Fields

The thumbs.py file defines the following fields for the XBlock in the ThumbsBlockBase class.

class ThumbsBlockBase(object):
upvotes = Integer(

help="Number of up votes",
default=0,
scope=Scope.user_state_summary

)
downvotes = Integer(

help="Number of down votes",
default=0,
scope=Scope.user_state_summary

)
voted = Boolean(

(continues on next page)

8.4. Anatomy of an XBlock 55

https://docs.openedx.org/en/latest/developers/references/developer_guide/testing/browsers.html
https://github.com/openedx/xblock-sdk/tree/master/sample_xblocks/thumbs
https://github.com/openedx/xblock-sdk/blob/master/sample_xblocks/thumbs/thumbs.py

XBlock API Guide

(continued from previous page)

help="Has this student voted?",
default=False,
scope=Scope.user_state

)

Note the following details about the fields in the Thumbs XBlock.

• upvotes and downvotes store the cumulative up and down votes of users.

These fields have the scope Scope.user_state_summary. This indicates that the data in these fields are specific
to the XBlock and the same for all users.

• voted stores whether the user has voted. This field has the scope Scope.user_state. This indicates that the
data in this field applies to the XBlock and to the specific user.

For more information, see XBlock Fields.

Thumb XBlock Student View

The thumbs.py file defines the student view for the XBlock in the ThumbsBlockBase class.

def student_view(self, context=None): # pylint: disable=W0613
"""
Create a fragment used to display the XBlock to a student.
`context` is a dictionary used to configure the display (unused)

Returns a `Fragment` object specifying the HTML, CSS, and JavaScript
to display.
"""

Load the HTML fragment from within the package and fill in the template

html_str = pkg_resources.resource_string(
__name__,
"static/html/thumbs.html".decode('utf-8')

)
frag = Fragment(str(html_str).format(block=self))

Load the CSS and JavaScript fragments from within the package
css_str = pkg_resources.resource_string(

__name__,
"static/css/thumbs.css".decode('utf-8')

)
frag.add_css(str(css_str))

js_str = pkg_resources.resource_string(
__name__,
"static/js/src/thumbs.js".decode('utf-8')

)
frag.add_javascript(str(js_str))

frag.initialize_js('ThumbsBlock')
return frag

56 Chapter 8. Open edX XBlock Tutorial

XBlock API Guide

The student view composes and returns the fragment from static HTML, JavaScript, and CSS files. A web page displays
the fragment to learners.

Note the following details about student view.

• The static HTML content is added when the fragment is initialized.

html_str = pkg_resources.resource_string(
__name__,
"static/html/thumbs.html".decode('utf-8')

)
frag = Fragment(str(html_str).format(block=self))

• The JavaScript and CSS file contents are added to the fragment with the add_javascript() and add_css()
methods.

• The JavaScript in the fragment must be initialized using the name of the XBlock class. The name also maps to
the function that initializes the XBlock in the JavaScript file.

frag.initialize_js('ThumbsBlock')

For more information, see View Methods.

Thumb XBlock Vote Handler

The thumbs.py file defines a handler that adds a user’s vote to the XBlock.

@XBlock.json_handler
def vote(self, data, suffix=''): # pylint: disable=unused-argument

"""
Update the vote count in response to a user action.
"""
Here is where we would prevent a student from voting twice, but then
we couldn't click more than once in the demo!
#
if self.voted:
log.error("cheater!")
return

if data['voteType'] not in ('up', 'down'):
log.error('error!')
return

if data['voteType'] == 'up':
self.upvotes += 1

else:
self.downvotes += 1

self.voted = True

return {'up': self.upvotes, 'down': self.downvotes}

Note the following details about the vote handler.

• The upvotes or downvotes fields are updated based on the user’s vote.

8.4. Anatomy of an XBlock 57

XBlock API Guide

• The voted field is set to True for the user.

• The updated upvotes and downvotes fields are returned.

For more information, see Handler Methods.

8.4.2 The XBlock HTML File

This section of the tutorial walks through the HTML file, thumbs.html, that is part of the Thumbs XBlock in the XBlock
SDK.

If you completed the steps in Build an XBlock: Quick Start, you can find this file locally at xblock_development/
xblock-sdk/sample_xblocks/thumbs/static/html/thumbs.html.

In the XBlock HTML file, you define the HTML content that is added to a fragment. The HTML content can reference
the XBlock fields. The fragment is returned by the view method, to be displayed by the runtime application.

<p>
{self.upvotes}↑
{self.downvotes}↓

</p>

Note the following details about the HTML file.

• The class values reference styles in the thumbs.css file. For more information, see The XBlock Stylesheets.

• The values self.upvotes and self.downvotes reference the fields in the XBlock Python class.

8.4.3 The XBlock JavaScript File

This section of the tutorial walks through the JavaScript file, thumbs.js, that is part of the Thumbs XBlock in the XBlock
SDK.

If you completed the steps in Build an XBlock: Quick Start, you can find this file locally at xblock_development/
xblock-sdk/sample_xblocks/thumbs/static/js/src/thumbs.js.

In the XBlock JavaScript file, you define code that manages user interaction with the XBlock. The code is added to a
fragment.

The XBlock’s JavaScript uses the runtime handler, and can use the children and childMap functions as needed.

The JavaScript references the XBlock fields and methods. The fragment is returned by the view method, to be displayed
by the runtime application.

function ThumbsAside(runtime, element, block_element, init_args) {
return new ThumbsBlock(runtime, element, init_args);

}

function ThumbsBlock(runtime, element, init_args) {
function updateVotes(votes) {
$('.upvote .count', element).text(votes.up);
$('.downvote .count', element).text(votes.down);

}

var handlerUrl = runtime.handlerUrl(element, 'vote');

$('.upvote', element).click(function(eventObject) {
(continues on next page)

58 Chapter 8. Open edX XBlock Tutorial

https://github.com/openedx/xblock-sdk/blob/master/sample_xblocks/thumbs/static/html/thumbs.html
https://github.com/openedx/xblock-sdk/blob/master/sample_xblocks/thumbs/static/js/src/thumbs.js

XBlock API Guide

(continued from previous page)

$.ajax({
type: "POST",
url: handlerUrl,
data: JSON.stringify({voteType: 'up'}),
success: updateVotes

});
});

$('.downvote', element).click(function(eventObject) {
$.ajax({

type: "POST",
url: handlerUrl,
data: JSON.stringify({voteType: 'down'}),
success: updateVotes

});
});
return {};

};

Note the following details about the JavaScript file.

• The function ThumbsBlock initializes the XBlock. A JavaScript function to initialize the XBlock is required.

• The ThumbsBlock function maps to the constructor in the XBlock Python file and provides access to its methods
and fields.

• The ThumbsBlock function uses the runtime handler.

var handlerUrl = runtime.handlerUrl(element, 'vote');

• The ThumbsBlock function includes the POST commands to increase the up and down votes in the XBlock.

The XBlock JavaScript code can also use the children and childMap functions as needed. For more information,
see XBlock Children.

8.4.4 The XBlock Stylesheets

This section of the tutorial walks through the CSS file, thumbs.css, that is part of the Thumbs XBlock in the XBlock
SDK.

If you completed the steps in Build an XBlock: Quick Start, you can find this file locally at xblock_development/
xblock-sdk/sample_xblocks/thumbs/static/css/thumbs.css.

In the XBlock CSS file, you define the styles that are added to the fragment that is returned by the view method to be
displayed by the runtime application.

.upvote, .downvote {
cursor: pointer;
border: 1px solid #888;
padding: 0 .5em;

}
.upvote { color: green; }
.downvote { color: red; }

The styles in thumbs.css are referenced in the XBlock HTML file.

8.4. Anatomy of an XBlock 59

https://github.com/openedx/xblock-sdk/blob/master/sample_xblocks/thumbs/static/css/thumbs.css

XBlock API Guide

8.5 Customize Your XBlock

Now that you have created your XBlock skeleton, myxblock, you need to make it do something. This part of the tutorial
explains modifying myxblock; for practical purposes, we will update it to match the Thumbs XBlock that is installed
with the XBlock SDK.

For more information about the Thumbs XBlock, see Anatomy of an XBlock

For more information about the different components of an XBlock, see XBlock Concepts.

8.5.1 Customize myxblock.py

This section describes how to modify the Python file of the XBlock you created, myxblock.py, to provide the func-
tionality in the Thumbs XBlock example in the XBlock SDK.

In myxblock.py, you will define fields, views, handlers, and workbench scenarios.

• The Default XBlock Python File

• Add Comments

• Add XBlock Fields

• Define the Student View

• Define the Vote Handler

• Next Step

The Default XBlock Python File

When you create a new XBlock, the default Python file is created automatically, with skeletal functionality defined. In
the xblock_development/myxblock/myxblock/ directory, see the file myxblock.py.

"""TO-DO: Write a description of what this XBlock is."""

import pkg_resources

from web_fragments.fragment import Fragment
from xblock.core import XBlock
from xblock.fields import Integer, Scope

class MyXBlock(XBlock):
"""
TO-DO: document what your XBlock does.
"""

Fields are defined on the class. You can access them in your code as
self.<fieldname>.

TO-DO: delete count, and define your own fields.
count = Integer(

default=0, scope=Scope.user_state,
(continues on next page)

60 Chapter 8. Open edX XBlock Tutorial

https://github.com/openedx/xblock-sdk/tree/master/sample_xblocks/thumbs

XBlock API Guide

(continued from previous page)

help="A simple counter, to show something happening",
)

def resource_string(self, path):
"""Handy helper for getting resources from our kit."""
data = pkg_resources.resource_string(__name__, path)
return data.decode("utf8")

TO-DO: change this view to display your data your own way.
def student_view(self, context=None):

"""
The primary view of the MyXBlock, shown to students
when viewing courses.
"""
html = self.resource_string("static/html/myxblock.html")
frag = Fragment(html.format(self=self))
frag.add_css(self.resource_string("static/css/myxblock.css"))
frag.add_javascript(self.resource_string("static/js/src/myxblock.js"))
frag.initialize_js('MyXBlock')
return frag

TO-DO: change this handler to perform your own actions. You may need more
than one handler, or you may not need any handlers at all.
@XBlock.json_handler
def increment_count(self, data, suffix=''):

"""
An example handler, which increments the data.
"""
Just to show data coming in...
assert data['hello'] == 'world'

self.count += 1
return {"count": self.count}

TO-DO: change this to create the scenarios you'd like to see in the
workbench while developing your XBlock.
@staticmethod
def workbench_scenarios():

"""A canned scenario for display in the workbench."""
return [

("MyXBlock",
"""<myxblock/>
"""),
("Multiple MyXBlock",
"""<vertical_demo>

<myxblock/>
<myxblock/>
<myxblock/>
</vertical_demo>

"""),
]

8.5. Customize Your XBlock 61

XBlock API Guide

Add Comments

As a best practice and because XBlocks can be shared, you should add comments to the myxblock.py file. Replace
the “TO DO” indicators with a description of what the XBlock does and any details future developers or users would
want to know.

Add XBlock Fields

You determine the data your XBlock stores through fields. Fields store user and XBlock state as JSON data.

To customize your myxblock.py file so that it has the same functionality as the thumbs.py file, you need to add three
fields to the XBlock, each with the right scope.

• upvotes, to store the number of times users up-vote the XBlock. The value applies to the XBlock and all users
collectively.

• downvotes, to store the number of times users down-vote the XBlock. The value applies to the XBlock and all
users collectively.

• voted, to record whether or not the user has voted. The value applies to the XBlock and each user individually.

Review the XBlock Fields section, then add the required fields to myxblock.py. You can remove the count field,
which was defined automatically when you created the XBlock.

Check Fields Against the Thumbs XBlock

After you have defined the fields, check your work against the fields in the Thumbs XBlock, in the file
xblock_development/xblock-sdk/sample_xblocks/thumbs/thumbs.py.

class ThumbsBlockBase(object):
upvotes = Integer(

help="Number of up votes",
default=0,
scope=Scope.user_state_summary

)
downvotes = Integer(

help="Number of down votes",
default=0,
scope=Scope.user_state_summary

)
voted = Boolean(

help="Has this student voted?",
default=False,
scope=Scope.user_state

)

If necessary, make corrections to the fields in your XBlock so that they match the fields in the Thumbs XBlock.

Note the following details.

• upvotes and downvotes have the scope Scope.user_state_summary. This indicates that the data in these
fields are specific to the XBlock and the same for all users.

• voted has the scope Scope.user_state. This indicates that the data in this field applies to the XBlock and to
the specific user.

62 Chapter 8. Open edX XBlock Tutorial

XBlock API Guide

Define the Student View

The XBlock Python file must contain one or more view methods.

To run the XBlock in the Open edX Platform Learning Management System, there must be a method named
student_view. If you intend the XBlock to run in a different runtime application, you might need to define a different
name. For more information, see Open edX Learning Management System as an XBlock Runtime.

In myxblock.py, examine the student_view method that was defined automatically when you created the XBlock.

The student view composes and returns the fragment from static HTML, JavaScript, and CSS files. A web page displays
the fragment to learners.

Note the following details about student view.

• The static HTML is added when the fragment is initialized.

html = self.resource_string("static/html/myxblock.html")
frag = Fragment(unicode(html_str).format(self=self))

• The JavaScript and CSS files are added to the fragment with the add_javascript() and add_css()methods.

• The JavaScript in the fragment must be initialized using the name of the XBlock class. The name also maps to
the function that initializes the XBlock in the JavaScript file.

frag.initialize_js('MyXBlock')

As you can see, the necessary functions of the view were added automatically. Check the student view in myxblock.
py against the student view in thumbs.py. Note that the only differences are the file names of the HTML, CSS, and
JavaScript files added to the fragment. As the file names are correct for MyXBlock, you do not need to edit the student
view at all.

Define the Vote Handler

Handlers process input events from the XBlock JavaScript code. You use handlers to add interactivity to your block.
In your XBlock, you use a handler to process votes from users.

The vote handler in your XBlock must perform the following functions.

1. Update upvotes or downvotes fields based on the user’s vote.

2. Set the voted field to True for the user.

3. Return the updated upvotes and downvotes fields.

Review the XBlock Methods section, then implement the vote handler in myxblock.py.

You can use any name for the vote handler, and you will use the same name in the JavaScript code to connect browser
events to the vote handler running in the server. To match the Thumbs XBlock, use the name vote.

8.5. Customize Your XBlock 63

https://github.com/openedx/xblock-sdk/blob/master/sample_xblocks/thumbs/thumbs.py

XBlock API Guide

Check the Handler Against the Thumbs XBlock

After you have defined the vote handler, check your work against the handler in the Thumbs XBlock.

@XBlock.json_handler
def vote(self, data, suffix=''): # pylint: disable=unused-argument

"""
Update the vote count in response to a user action.
"""
Here is where we would prevent a student from voting twice, but then
we couldn't click more than once in the demo!
#
if self.voted:
log.error("cheater!")
return

if data['voteType'] not in ('up', 'down'):
log.error('error!')
return

if data['voteType'] == 'up':
self.upvotes += 1

else:
self.downvotes += 1

self.voted = True

return {'up': self.upvotes, 'down': self.downvotes}

If necessary, make corrections to the handler in your XBlock so that it matches the handler in the Thumbs XBlock.

Next Step

After you complete your customizations to the Python file, you can continue on and customize the XBlock HTML file.

8.5.2 Customize myxblock.html

This section describes how to modify the static HTML file of the XBlock you created, myxblock.html, to provide the
functionality in the Thumbs XBlock example in the XBlock SDK.

In myxblock.html, you will define the HTML content that is added to a fragment. The HTML content can reference
the XBlock fields. The fragment is returned by the view method.

• The Default XBlock HTML File

• Add HTML Content

• Check HTML Against the Thumbs XBlock

• Next Step

64 Chapter 8. Open edX XBlock Tutorial

XBlock API Guide

The Default XBlock HTML File

When you create a new XBlock, the default static HTML file is created automatically, with skeletal functionality defined.
In the xblock_development/myxblock/myxblock/static/html directory, see the file myxblock.html.

<div class="myxblock_block">
<p>MyXBlock: count is now
{self.count} (click me to increment).

</p>
</div>

The file contains HTML to display the count field that was added by default to the XBlock. Delete the HTML between
the div elements.

Add HTML Content

You can create HTML as needed to display the state of your XBlock. The Thumbs XBlock displays the up and down
votes. Create a single paragraph and follow the guidelines below.

• Create two span elements, to display up-votes and down-votes.

• Use upvote and downvote as class values for the span elements. You will define these classes in myxblock.
css. For more information, see Customize myxblock.css.

• Within each span element, create another span element, each with the class value count. For the value of each
embedded span element, reference the upvotes and downvotes fields you defined in the Python file for the
XBlock.

• For the value of each of the outer span elements, use the HTML unicode characters ↑ and &darr to show
thumbs up and thumbs down symbols next to the number of votes.

Check HTML Against the Thumbs XBlock

After you have defined the HTML, check your work against the HTML in the Thumbs XBlock, in the file
xblock_development/xblock-sdk/sample_xblocks/thumbs/static/html/thumbs.html.

<p>
{self.upvotes}↑
{self.downvotes}↓

</p>

If necessary, make corrections to the HTML in your XBlock so that it matches the HTML in the Thumbs XBlock.

Next Step

After you complete your customizations to the HTML file, you can continue on and customize the XBlock JavaScript
file.

8.5. Customize Your XBlock 65

https://en.wikipedia.org/wiki/List_of_XML_and_HTML_character_entity_references

XBlock API Guide

8.5.3 Customize myxblock.js

This section describes how to modify the JavaScript file of the XBlock you created, myxblock.js, to provide the
functionality in the Thumbs XBlock example in the XBlock SDK.

In myxblock.js, you will define code that manages user interaction with the XBlock. The code is added to a fragment.

• The Default XBlock JavaScript File

• Add JavaScript Code

• Check JavaScript Against the Thumbs XBlock

• Next Step

The Default XBlock JavaScript File

When you create a new XBlock, the default JavaScript file is created automatically, with skeletal functionality defined.
In the xblock_development/myxblock/myxblock/static/js/snc directory, see the file myxblock.js.

/* Javascript for MyXBlock. */
function MyXBlock(runtime, element) {

function updateCount(result) {
$('.count', element).text(result.count);

}

var handlerUrl = runtime.handlerUrl(element, 'increment_count');

$('p', element).click(function(eventObject) {
$.ajax({

type: "POST",
url: handlerUrl,
data: JSON.stringify({"hello": "world"}),
success: updateCount

});
});

$(function ($) {
/* Here's where you'd do things on page load. */

});
}

The file contains JavaScript code to increment the count field that was added by default to the XBlock. Delete this
code.

66 Chapter 8. Open edX XBlock Tutorial

XBlock API Guide

Add JavaScript Code

JavaScript code implements the browser-side functionality you need for your XBlock. The Thumbs XBlock uses clicks
on the up and down vote buttons to call the handler to record votes.

Follow the guidelines below to implement JavaScript code.

• Add the function MyXBlock to initialize the XBlock.

The MyXBlock function maps to the constructor in the XBlock Python file and provides access to its methods and
fields.

• Add the URL to the vote handler to the MyXBlock function.

var handlerUrl = runtime.handlerUrl(element, 'vote');

• Add POST commands in the MyXBlock function to increase the up and down votes in the XBlock.

Note: Do not change the main function name, MyXBlock.

Check JavaScript Against the Thumbs XBlock

After you have defined the JavaScript code, check your work against the code in the Thumbs XBlock, in the file
xblock_development/xblock-sdk/sample_xblocks/thumbs/static/js/src/thumbs.js.

function ThumbsAside(runtime, element, block_element, init_args) {
return new ThumbsBlock(runtime, element, init_args);

}

function ThumbsBlock(runtime, element, init_args) {
function updateVotes(votes) {
$('.upvote .count', element).text(votes.up);
$('.downvote .count', element).text(votes.down);

}

var handlerUrl = runtime.handlerUrl(element, 'vote');

$('.upvote', element).click(function(eventObject) {
$.ajax({

type: "POST",
url: handlerUrl,
data: JSON.stringify({voteType: 'up'}),
success: updateVotes

});
});

$('.downvote', element).click(function(eventObject) {
$.ajax({

type: "POST",
url: handlerUrl,
data: JSON.stringify({voteType: 'down'}),
success: updateVotes

});
(continues on next page)

8.5. Customize Your XBlock 67

XBlock API Guide

(continued from previous page)

});
return {};

};

If necessary, make corrections to the code in your XBlock so that it matches the code in the Thumbs XBlock.

Next Step

After you complete your customizations to the JavaScript file, you can continue on and customize the XBlock CSS file.

8.5.4 Customize myxblock.css

This section describes how to modify the static CSS file of the XBlock you created, myxblock.css, to provide the
functionality in the Thumbs XBlock example in the XBlock SDK.

In myxblock.css, you define the styles that are added to the fragment that is returned by the view method to be
displayed by the runtime application.

• The Default XBlock CSS File

• Add CSS Code

• Check CSS Against the Thumbs XBlock

• Congrats!

The Default XBlock CSS File

When you create a new XBlock, the default static CSS file is created automatically, with skeletal functionality defined.
In the xblock_development/myxblock/myxblock/static/css directory, see the file myxblock.css.

/* CSS for MyXBlock */

.myxblock_block .count {
font-weight: bold;

}

.myxblock_block p {
cursor: pointer;

}

The file contains CSS code to format the count field that was added by default to the XBlock. Delete this code.

68 Chapter 8. Open edX XBlock Tutorial

XBlock API Guide

Add CSS Code

You must add CSS code to format the XBlock content. Follow the guidelines below.

• Create a single class that defines formatting for .upvote and .downvote.

• The cursor type is pointer.

• The border is 1px, solid, and with the color #888.

• The padding is 0.5em;

• The color for .upvote is green and for downvote is red.

Check CSS Against the Thumbs XBlock

After you have defined the CSS code, check your work against the CSS in the Thumbs XBlock, in the file
xblock_development/xblock-sdk/sample_xblocks/thumbs/static/css/thumbs.css.

.upvote, .downvote {
cursor: pointer;
border: 1px solid #888;
padding: 0 .5em;

}
.upvote { color: green; }
.downvote { color: red; }

If necessary, make corrections to the CSS code in your XBlock so that it matches the code in the Thumbs XBlock.

The styles in thumbs.css are referenced in the XBlock HTML file.

Congrats!

You’ve completed customizing MyXBlock to have up and down voting functionality. Read on for more about XBlocks
- and have fun making your next XBlock!

8.6 XBlock Concepts

You build XBlocks that course teams use to create independent course components that work seamlessly with other
components in an online course. For example, you can build XBlocks to represent individual problems, lessons, or
course sections. For more information, see Introduction to XBlocks.

This part of the tutorial provides conceptual information about XBlocks that all XBlock developers must understand.

8.6.1 XBlock Fields

You use XBlock fields to store state data for your XBlock.

• XBlock Fields and State

• Field Scope

• Fields and Data Storage

8.6. XBlock Concepts 69

XBlock API Guide

• Initializing Fields

• Fields and OLX

• Field Requirements in the edX Platform

• Default Fields in a New XBlock

XBlock Fields and State

XBlock fields are Python attributes that store user and XBlock state as JSON data.

You define the fields in the XBlock Python file. For example, the thumbs.py file in the XBlock SDK includes three
fields.

class ThumbsBlockBase(object):
upvotes = Integer(

help="Number of up votes",
default=0,
scope=Scope.user_state_summary

)
downvotes = Integer(

help="Number of down votes",
default=0,
scope=Scope.user_state_summary

)
voted = Boolean(

help="Has this student voted?",
default=False,
scope=Scope.user_state

)

Field Names

The field names you define in the Python file are also used in the XBlock JavaScript and HTML code.

Field Parameters

When you initialize an XBlock field, you define three parameters.

• help: A help string for the field that can be used in an application such as edX Studio.

• default: The default value for the field.

• scope: The scope of the field. For more information, see the next section.

70 Chapter 8. Open edX XBlock Tutorial

XBlock API Guide

Field Scope

Field scope is the relationship of the field to users and the XBlock.

You define the field scope when initializing the field in the XBlock Python file. For example, in thumbs.py, the voted
field is initialized to have the scope user_state.

voted = Boolean(help="Has this student voted?", default=False,
scope=Scope.user_state)

User Scope

Fields can relate to users in the following ways.

• No user: the field data is not related to any users. No learner activity created modified the field value, and all
learners see the same value.For example, a field that contains course content is independent of users.

Note: The XBlock cannot modify the value of a field that is not related to any users.

• One user: the field data is specific to a single user. For example, the answer to a problem is specific to the user
who submitted it.

• All users: the field data is common for all users. Learner activity can change the field value, and all learners see
the same value. For example, the total number of learners who answer a question is the same for all users.

Note: Field data related to all users is not the same as aggregate or query data. The same value is shared for all
users, and you cannot associate specific actions to specific users.

XBlock Scope

Fields can relate to XBlocks in the following ways.

• Block usage: the field data is related to an instance, or usage, of the XBlock in a particular course. In most
cases, you use the Block usage scope. For example, for an XBlock that polls learners and shows totals for each
response, you would need the question and available answers to be specific to that instance of the XBlock in your
course.

• Block definition: the field data is related to the definition of the XBlock. The definition is specified by the
content creator. A definition can be shared across one or more uses. For example, you could create a single
XBlock definition with many uses, and those uses can appear across courses or within the same course.

• Block type: The field data is related to the Python type of the XBlock, and is shared across all instances of the
XBlock in all courses.

• All: The field data is related to all XBlocks, of all types. Any XBlock can access the field data.

Note: When you use the All scope, there is potential for name conflicts. If you have two fields of the same
name with the scope All in different XBlock types, both fields point to the same data. Therefore you should use
caution when using All.

8.6. XBlock Concepts 71

XBlock API Guide

User and Block Scope Independence

The user and block scope of a field are independent of each other. The field scope you define specifies both. The
following examples show different ways you can combine user and block scope.

• A user’s progress through a particular set of problems is stored in a field with the scope One user and XBlock
usage.

• The content to display in an XBlock is stored in a field with the scope No user and Block definition.

• A user’s preferences for a type of XBlock are stored in a field with the scope with One user and XBlock type.

• Information about the user, such as language or timezone, is stored in a field with the scope with One user and
All.

Scope combinations that are used together frequently are available is a set of predefined scopes, as described below.

Predefined Scopes

XBlock includes the following predefined scopes that you can use when configuring fields. Each of these scopes
includes the indicated user and block scope settings.

• Scope.content

– Block definition

– No user

• Scope.settings

– Block usage

– No user

• Scope.user_state

– Block usage

– One user

• Scope.preferences

– Block type

– One user

• Scope.user_info

– All blocks

– One user

• Scope.user_state_summary

– Block usage

– All users

72 Chapter 8. Open edX XBlock Tutorial

XBlock API Guide

Fields and Data Storage

Because XBlock fields are written and retrieved as single entities, you cannot store a large amount of data in a single
field.

To store very large amounts of data, you should split the data across many smaller fields.

Initializing Fields

You do not use the __init__ method with XBlocks.

XBlocks can be used in many contexts, and the __init__ method might not work in those contexts.

To initialize field values, use one of the following alternatives.

• Use xblock.fields.UNIQUE_ID to set a default string value for the field.

• Use a lazy property decorator, so that when a field is first accessed, a function is called to set the value.

• Run the logic to set the default field value in the view instead of the __init__ method.

Fields and OLX

XBlock fields map to attributes in the OLX (open learning XML) definition.

For example, you might include the fields href, maxwidth, and maxheight in a SimpleVideoBlock XBlock. You
configure the fields as in the following example.

class SimpleVideoBlock(XBlock):
"""
An XBlock providing Embed capabilities for video
"""

href = String(help="URL of the video page at the provider",
default=None, scope=Scope.content)

maxwidth = Integer(help="Maximum width of the video", default=800,
scope=Scope.content)

maxheight = Integer(help="Maximum height of the video", default=450,
scope=Scope.content)

By default, the SimpleVideoBlock XBlock is represented in OLX as in the following example:

<simplevideo
href="https://vimeo.com/46100581"
maxwidth="800"
maxheight="450"

/>

You can customize the OLX representation of the XBlock by using the xblock.parse_xml() and xblock.
add_xml_to_node() methods.

8.6. XBlock Concepts 73

XBlock API Guide

Field Requirements in the edX Platform

For information about field requirements in the edX Platform, see Open edX LMS and Open edX Studio.

Default Fields in a New XBlock

When you create a new XBlock, the count field is added to the Python file by default. This field is for demonstration
purposes and you should replace it with your own field definitions.

8.6.2 XBlock Methods

You use XBlock methods in the XBlock Python file to define the behavior of your XBlock.

• View Methods

• Handler Methods

• Default Methods in a New XBlock

View Methods

XBlock view methods are Python methods invoked by the XBlock runtime to render the XBlock.

An XBlock can have multiple view methods. For example, an XBlock might have a student view for rendering the
XBlock for learners, and an editing view for rendering the XBlock to course staff.

Note: The XBlock view names are specified by runtime applications; you cannot use arbitrary view names.

For information about the view requirements in the edX Platform, see Open edX LMS and Open edX Studio.

Typically, you define a view to produce a fragment that is used to render the XBlock as part of a web page. Fragments
are aggregated hierarchically. You can use any field to affect the rendering of the XBlock as needed.

In the following example, the Thumbs sample XBlock in the XBlock SDK defines a student view.

def student_view(self, context=None): # pylint: disable=W0613
"""
Create a fragment used to display the XBlock to a student.
`context` is a dictionary used to configure the display (unused)

Returns a `Fragment` object specifying the HTML, CSS, and JavaScript
to display.
"""

Load the HTML fragment from within the package and fill in the template

html_str = pkg_resources.resource_string(
__name__,
"static/html/thumbs.html".decode('utf-8')

)
frag = Fragment(str(html_str).format(block=self))

(continues on next page)

74 Chapter 8. Open edX XBlock Tutorial

XBlock API Guide

(continued from previous page)

Load the CSS and JavaScript fragments from within the package
css_str = pkg_resources.resource_string(

__name__,
"static/css/thumbs.css".decode('utf-8')

)
frag.add_css(str(css_str))

js_str = pkg_resources.resource_string(
__name__,
"static/js/src/thumbs.js".decode('utf-8')

)
frag.add_javascript(str(js_str))

frag.initialize_js('ThumbsBlock')
return frag

Although view methods typically produce HTML-based renderings, they can be used for other purposes. See the
documentation for your runtime application to verify the type of data the view must return and how it will be used.

Handler Methods

You write handlers to implement the server side of your XBlock’s interactive features.

XBlock handlers are Python methods invoked by AJAX calls from the user’s browser. Handlers accept an HTTP request
and return an HTTP response.

An XBlock can have any number of handlers. For example, a problem XBlock might contain submit and show_answer
handlers.

Each handler has a specific name of your choosing that is mapped to from specific URLs by the runtime. The runtime
provides a mapping from handler names to specific URLs so that the XBlock JavaScript code can make requests to its
handlers. Handlers can be used with GET and POST requests.

Handler methods also emit events for learner interactions and grades. For more information, see When an XBlock
Should Emit Events.

In the following example, the Thumbs sample XBlock in the XBlock SDK defines a handler for voting.

def vote(self, data, suffix=''): # pylint: disable=unused-argument
"""
Update the vote count in response to a user action.
"""
Here is where we would prevent a student from voting twice, but then
we couldn't click more than once in the demo!
#
if self.voted:
log.error("cheater!")
return

if data['voteType'] not in ('up', 'down'):
log.error('error!')
return

(continues on next page)

8.6. XBlock Concepts 75

XBlock API Guide

(continued from previous page)

if data['voteType'] == 'up':
self.upvotes += 1

else:
self.downvotes += 1

self.voted = True

return {'up': self.upvotes, 'down': self.downvotes}

Default Methods in a New XBlock

When you create a new XBlock, two methods are added automatically.

• The view method student_view.

You can modify the contents of this view, but to use your XBlock with the edX Platform, you must keep the
method name student_view.

• The handler method increment_count.

This method is for demonstration purposes and you can remove it.

8.6.3 XBlock Fragments

A fragment is a part of a web page returned by an XBlock view method.

• Fragment Contents

• Fragments and XBlock Children

• Fragments and Views

Fragment Contents

A fragment typically contains all the resources needed to display the XBlock in a web page, including HTML content,
JavaScript, and CSS resources.

HTML Content

Content in a fragment is typically HTML, though some runtimes might require views that return other mime-types.
Each fragment has only a single content value.

76 Chapter 8. Open edX XBlock Tutorial

XBlock API Guide

JavaScript

A fragment contains the JavaScript resources necessary to run the XBlock. JavaScript resources can include both
external files to link to, and inline source code.

When fragments are composed, external JavaScript links are made unique, so that files are not loaded multiple times.

JavaScript Initializer

The JavaScript specified for a fragment can also specify a function to be called when that fragment is rendered on the
page.

The DOM element containing all of the content in the fragment is passed to this function, which then executes any
code needed to make that fragment operational.

The JavaScript view is also passed a JavaScript runtime object that contains a set of functions to generate links back to
the XBlock’s handlers and views on the runtime server.

For example, see the code in the Thumbs XBlock, in the file xblock_development/xblock- sdk/
sample_xblocks/thumbs/static/js/source/thumbs.js.

function ThumbsAside(runtime, element, block_element, init_args) {
return new ThumbsBlock(runtime, element, init_args);

}

function ThumbsBlock(runtime, element, init_args) {
function updateVotes(votes) {
$('.upvote .count', element).text(votes.up);
$('.downvote .count', element).text(votes.down);

}

var handlerUrl = runtime.handlerUrl(element, 'vote');

$('.upvote', element).click(function(eventObject) {
$.ajax({

type: "POST",
url: handlerUrl,
data: JSON.stringify({voteType: 'up'}),
success: updateVotes

});
});

$('.downvote', element).click(function(eventObject) {
$.ajax({

type: "POST",
url: handlerUrl,
data: JSON.stringify({voteType: 'down'}),
success: updateVotes

});
});
return {};

};

8.6. XBlock Concepts 77

XBlock API Guide

CSS

A fragment contains CSS resources to control how the XBlock is displayed. CSS resources can include both external
files to link to and inline source code.

When fragments are composed, external JavaScript links will are made unique, so that files are not loaded multiple
times.

Fragments and XBlock Children

Because XBlocks are nested hierarchically, a single XBlock view might require collecting renderings from each of
its children, then composing them together. The parent XBlock view must handle composing its children’s content
together to create the parent content.

The fragment system has utilities for composing children’s resources together into the parent.

Fragments and Views

You configure fragments in XBlock view methods.

In the following example, the Thumbs sample XBlock in the XBlock SDK defines a student view that composes and
returns a fragment with HTML, JavaScript, and CSS strings generated from the XBlock’s static files.

def student_view(self, context=None): # pylint: disable=W0613
"""
Create a fragment used to display the XBlock to a student.
`context` is a dictionary used to configure the display (unused)

Returns a `Fragment` object specifying the HTML, CSS, and JavaScript
to display.
"""

Load the HTML fragment from within the package and fill in the template

html_str = pkg_resources.resource_string(
__name__,
"static/html/thumbs.html".decode('utf-8')

)
frag = Fragment(str(html_str).format(block=self))

Load the CSS and JavaScript fragments from within the package
css_str = pkg_resources.resource_string(

__name__,
"static/css/thumbs.css".decode('utf-8')

)
frag.add_css(str(css_str))

js_str = pkg_resources.resource_string(
__name__,
"static/js/src/thumbs.js".decode('utf-8')

)
frag.add_javascript(str(js_str))

(continues on next page)

78 Chapter 8. Open edX XBlock Tutorial

XBlock API Guide

(continued from previous page)

frag.initialize_js('ThumbsBlock')
return frag

8.6.4 XBlock Children

An XBlock can have child XBlocks.

• XBlock Tree Structure

• Accessing Children (Server-Side)

• Accessing Children (Client-Side)

XBlock Tree Structure

An XBlock does not refer directly to its children. Instead, the structure of a tree of XBlocks is maintained by the
runtime application, and is made available to the XBlock through a runtime service. For more information, see XBlock
Runtimes.

This allows the runtime to store, access, and modify the structure of a course without incurring the overhead of the
XBlock code itself.

XBlock children are not implicitly available to their parents. The runtime provides the parent XBlock with a list of
child XBlock IDs. The child XBlock can then be loaded with the get_child() function. Therefore the runtime can
defer loading child XBlocks until they are actually required.

Accessing Children (Server-Side)

To access XBlock children through the server, use the following methods.

• To iterate over the XBlock’s children, use self.get_children which returns the IDs for each child XBlock.

• Then, to access a child XBlock, use self.get_child(usage_id) for your desired ID. You can then modify
the child XBlock using its .save() method.

• To render a given child XBlock, use self.runtime.render_child(usage_id).

• To render all children for a given XBlock, use self.runtime.render_children().

• To ensure the XBlock children are rendered correctly, add the fragment.content into the parent XBlock’s
HTML file, then use fragment.add_frag_resources() (or .add_frags_resources(), to render all chil-
dren). This ensures that the JavaScript and CSS of child elements are included.

8.6. XBlock Concepts 79

XBlock API Guide

Accessing Children (Client-Side)

To access XBlock children through the client, with JavaScript, use the following methods.

• Use runtime.children(element), where element is the DOM node that contains the HTML representation
of your XBlock’s server-side view. (runtime is automatically provided by the XBlock runtime.)

• Similarly, you can use runtime.childMap(element, name) to get a child element that has a specific name.

8.6.5 XBlock Runtimes

An XBlock runtime is the application that hosts XBlock. For example, the XBlock SDK, the Open edX LMS, and Open
edX Studio are all XBlock runtime applications. You can also render an individual XBlock in HTML with the XBlock
URL.

• Runtime Functions

• Extending XBlocks

• JavaScript Runtimes

• XBlock Runtime API

• Rendering XBlocks with the XBlock URL

Runtime Functions

An XBlock runtime application performs the following functions.

• Instantiate XBlocks with the correct data access.

• Display the HTML returned by XBlock views.

Note: Runtime applications document the view names they require of XBlocks.

• Bind the front-end JavaScript code to the correct DOM elements.

• Route handler requests from the client-side XBlock to the server-side handlers.

Extending XBlocks

A runtime application can have mixin classes that it combines with your XBlock class. Therefore, your instances of
your XBlock might be subclasses of your original XBlock class.

By using mixins, a runtime application can add field data and methods to all XBlocks that it hosts, without requiring
that XBlocks themselves are aware of the runtime they are being hosted in.

80 Chapter 8. Open edX XBlock Tutorial

XBlock API Guide

JavaScript Runtimes

The application that runs XBlocks uses a JavaScript runtime to load XBlocks. Specifically, the JavaScript runtime
provides the following functions to XBlocks.

• The Runtime Handler

• XBlock Children

• A map of the XBlock children

The XBlock SDK JavaScript Runtime

The file 1.js in the XBlock SDK provides the JavaScript runtime for the workbench.

// XBlock runtime implementation.

var RuntimeProvider = (function() {

var getRuntime = function(version) {
if (! this.versions.hasOwnProperty(version)) {
throw 'Unsupported XBlock version: ' + version;

}
return this.versions[version];

};

var versions = {
1: {
handlerUrl: function(block, handlerName, suffix, query) {
suffix = typeof suffix !== 'undefined' ? suffix : '';
query = typeof query !== 'undefined' ? query : '';
var usage = $(block).data('usage');
var url_selector = $(block).data('url_selector');
if (url_selector !== undefined) {
baseUrl = window[url_selector];

}
else {baseUrl = handlerBaseUrl;}

// studentId and handlerBaseUrl are both defined in block.html
return (baseUrl + usage +

"/" + handlerName +
"/" + suffix +

"?student=" + studentId +
"&" + query);

},
children: function(block) {
return $(block).prop('xblock_children');

},
childMap: function(block, childName) {
var children = this.children(block);
for (var i = 0; i < children.length; i++) {
var child = children[i];
if (child.name == childName) {
return child

(continues on next page)

8.6. XBlock Concepts 81

https://github.com/openedx/xblock-sdk/blob/master/workbench/static/workbench/js/runtime/1.js

XBlock API Guide

(continued from previous page)

}
}

}
}

};

return {
getRuntime: getRuntime,
versions: versions

};
}());

var XBlock = (function () {

var initializeBlock = function (element) {
$(element).prop('xblock_children', initializeBlocks($(element)));

var version = $(element).data('runtime-version');
if (version === undefined) {

return null;
}

var runtime = RuntimeProvider.getRuntime(version);
var initFn = window[$(element).data('init')];
var jsBlock;
if(initFn.length == 2) {

jsBlock = new initFn(runtime, element) || {};
} else if (initFn.length == 3) {

var data = $(".xblock_json_init_args", element).text();
if (data) data = JSON.parse(data); else data = {};
jsBlock = new initFn(runtime, element, data) || {};

}

jsBlock.element = element;
jsBlock.name = $(element).data('name');
return jsBlock;

};

var initializeBlocks = function (element) {
return $(element).immediateDescendents('.xblock-v1').map(function(idx, elem) {

return initializeBlock(elem);
}).toArray();

};

return {
initializeBlocks: initializeBlocks

};
}());

var XBlockAsides = (function () {

var initializeAside = function (element) {
(continues on next page)

82 Chapter 8. Open edX XBlock Tutorial

XBlock API Guide

(continued from previous page)

var version = $(element).data('runtime-version');
if (version === undefined) {

return null;
}

var runtime = RuntimeProvider.getRuntime(version);
var initFn = window[$(element).data('init')];
var jsBlock;
// $(element).siblings('div.xblock-v1')[0]
var block_element = $(element).siblings('[data-usage="'+$(element).data('block_id

→˓')+'"]')
var data = $(".xblock_json_init_args", element).text();
if (data) data = JSON.parse(data); else data = {};
jsBlock = new initFn(runtime, element, block_element, data) || {};

jsBlock.element = element;
return jsBlock;

};

var initializeAsides = function (elements) {
return elements.map(function(idx, elem) {

return initializeAside(elem);
}).toArray();

};

return {
initializeAsides: initializeAsides

};
}());

$(function() {
// Find all the children of an element that match the selector, but only
// the first instance found down any path. For example, we'll find all
// the ".xblock" elements below us, but not the ones that are themselves
// contained somewhere inside ".xblock" elements.
$.fn.immediateDescendents = function(selector) {

return this.children().map(function(idx, element) {
if ($(element).is(selector)) {

return element;
} else {

return $(element).immediateDescendents(selector).toArray();
}

});
};

$('body').on('ajaxSend', function(elm, xhr, s) {
// Pass along the Django-specific CSRF token.
xhr.setRequestHeader('X-CSRFToken', $.cookie('csrftoken'));

});

XBlock.initializeBlocks($('body'));
XBlockAsides.initializeAsides($('.xblock_asides-v1'))

(continues on next page)

8.6. XBlock Concepts 83

XBlock API Guide

(continued from previous page)

});

The JavaScript Runtime Handler

The JavaScript runtime initializes the XBlock each time it is loaded by a user and returns the handler so the XBlock
can communicate with the server.

From the example above, the following part of the runtime generates and returns the handler to the XBlock.

var versions = {
1: {
handlerUrl: function(block, handlerName, suffix, query) {
suffix = typeof suffix !== 'undefined' ? suffix : '';
query = typeof query !== 'undefined' ? query : '';
var usage = $(block).data('usage');
var url_selector = $(block).data('url_selector');
if (url_selector !== undefined) {
baseUrl = window[url_selector];

}
else {baseUrl = handlerBaseUrl;}

// studentId and handlerBaseUrl are both defined in block.html
return (baseUrl + usage +

"/" + handlerName +
"/" + suffix +

"?student=" + studentId +
"&" + query);

. . .

The runtime handler code is called by the XBlock’s JavaScript code to get the XBlock URL.

For example, the Thumbs XBlock in the XBlock SDK, the thumbs.js file gets the handler from the XBlock runtime.

var handlerUrl = runtime.handlerUrl(element, 'vote');

XBlock Children

The JavaScript runtime also returns the list of child XBlocks to the XBlock.

From the example above, the following part of the runtime returns the list of children to the XBlock.

. . .

children: function(block) {
return $(block).prop('xblock_children');

},
. . .

An XBlock uses the children method when it needs to iterate over an ordered list of its child XBlocks.

84 Chapter 8. Open edX XBlock Tutorial

https://github.com/openedx/xblock-sdk/tree/master/sample_xblocks/thumbs
https://github.com/openedx/xblock-sdk/blob/master/sample_xblocks/thumbs/static/js/src/thumbs.js

XBlock API Guide

XBlock Child Map

The JavaScript runtime also returns the a map of child XBlocks to the running XBlock.

From the example above, the following part of the runtime generates and returns the list of children to the XBlock.

. . .

childMap: function(block, childName) {
var children = this.children(block);
for (var i = 0; i < children.length; i++) {

var child = children[i];
if (child.name == childName) {

return child
}

}
}
. . .

An XBlock uses the childMap function when it needs to access different child XBlocks to perform different actions
on them.

For example, the Problem XBlock in the XBlock SDK loads JavaScript code that gets the map of child XBlocks.

function handleCheckResults(results) {
$.each(results.submitResults || {}, function(input, result) {

callIfExists(runtime.childMap(element, input), 'handleSubmit', result);
});
$.each(results.checkResults || {}, function(checker, result) {

callIfExists(runtime.childMap(element, checker), 'handleCheck', result);

XBlock Runtime API

For more information, see XBlock Runtime API in the XBlock API Guide.

Rendering XBlocks with the XBlock URL

The XBlock URL supports HTML rendering of an individual XBlock without the user interface of the LMS.

To use the XBlock URL and return the HTML rendering of an individual XBlock, you use the following URL path for
an XBlock on an edX site.

https://{host}/xblock/{usage_id}

8.6. XBlock Concepts 85

https://github.com/openedx/xblock-sdk/blob/master/sample_xblocks/basic/problem.py
http://edx.readthedocs.io/projects/xblock/en/latest/

XBlock API Guide

Finding the usage_id

The usage_id is the unique identifier for the problem, video, text, or other course content component, or for sequential
or vertical course container component. There are several ways to find the usage_id for an XBlock in the LMS,
including viewing either the staff debug info or the page source. For more information, see Finding the Usage ID for
Course Content.

Example XBlock URLs

For example, a video component in the “Creating Video for the edX Platform” course on the edx.org site has the
following URL.

https://courses.edx.org/courses/course-v1:edX+VideoX+1T2016/courseware/
ccc7c32c65d342618ac76409254ac238/1a52e689bcec4a9eb9b7da0bf16f682d/

This video component appears as follows in the LMS.

To construct the XBlock URL for the same video component, you obtain its usage_id and then use the following URL
format.

https://courses.edx.org/xblock/block-v1:edX+VideoX+1T2016+type@video+block@47faf3a03c4f4023b187528c25932e0a

86 Chapter 8. Open edX XBlock Tutorial

https://edx.readthedocs.io/projects/edx-partner-course-staff/en/latest/course_features/lti/lti_address_content.html#finding-the-usage-id-for-course-content
https://edx.readthedocs.io/projects/edx-partner-course-staff/en/latest/course_features/lti/lti_address_content.html#finding-the-usage-id-for-course-content

XBlock API Guide

When you use this URL, the video component appears in your browser as follows.

For courses created prior to October 2014, the usage_id begins with i4x://, as in the following example.

https://courses.edx.org/xblock/i4x://edX/DemoX.1/problem/47bf6dbce8374b789e3ebdefd74db332

8.6.6 XBlocks, Events, and Grading

Events are emitted by the server or the browser to capture information about interactions with the courseware.

In most cases, your XBlock must emit events.

For example, assigning a grade is a common event.

• When an XBlock Should Emit Events

• Publish Events in Handler Methods

• Publish Grade Events

8.6. XBlock Concepts 87

XBlock API Guide

When an XBlock Should Emit Events

Analysis of events can provide insight about how learners use the XBlock. Using event data, analysts should be able to
reconstruct the state of the XBlock at any point in time.

Your XBlock should emit an event whenever a significant state change occurs, and when a grade for the learner’s
interaction is assigned. For example, when a learner submits an answer or otherwise interacts with your XBlock, an
event should record that action.

To assign grades from your XBlock, it must emit a grade event.

Publish Events in Handler Methods

You define handler methods to emit events.

In the handler, you use the XBlock runtime interface publish method to emit the event. The runtime.publish
method causes the runtime application to save the event data in the application event stream.

The following code shows the runtime.publish method syntax in an XBlock handler.

self.runtime.publish(self, "event_type",
{ event_dictionary })

Note the following information about the runtime.publish method.

• The event_type uniquely identifies the event in log files.

• The event dictionary contains key-value pairs that define the event.

Publish Grade Events

To assign a grade for a learner’s interaction with the XBlock, the XBlock handler method must publish a grade event.

A grade event uses the runtime.publish method with specific arguments.

• The event type is grade.

• The event dictionary must contain two entries.

– value: The learner’s score

– max_value: The maximum possible score

The current user’s user_id is implicit in the event dictionary.

..The event dictionary can also contain the user_id entry. If user_id is not specified, the current user’s ID is used.

For example, the following handler code emits a grade for the learner that is stored in the submission_result variable
in an XBlock with the maximum grade of 1.0.

self.runtime.publish(self, "grade",
{ value: submission_result
max_value: 1.0 })

Typically, the handler method also returns the calculated grade, so that it can be displayed to the learner.

88 Chapter 8. Open edX XBlock Tutorial

XBlock API Guide

has_score Variable

To be graded, in addition to publishing the grade event, the XBlock must also have a has_score variable set to True.

has_score = True

8.7 XBlocks and the edX Platform

8.7.1 Open edX Studio as an XBlock Runtime

Open edX Studio is the application in the Open edX Platform that instructors use to build courseware.

Because instructors use Studio to add and configure XBlocks, Studio is also an XBlock runtime application.

As an XBlock developer, you must understand what XBlock properties Studio requires.

Studio Requirements for XBlocks

Studio requires XBlocks to have the following properties.

• A view method named studio_view. This is the view that renders the XBlock in the Studio editor, allowing the
instructor to configure it. In Studio, the instructor accesses this view by selecting Edit in the component.

• A view method named author_view. This view is used to display the XBlock in the Studio preview mode.

The author_view method should be as close as possible to the LMS student_view, but may contain inline
editing capabilities.

If you do not define an author_view, the preview mode uses the student_view. For more information, see
Open edX Learning Management System as an XBlock Runtime.

• A class property named non_editable_metadata_fields. This variable contains a list of the XBlock fields
that should not be displayed in the Studio editor.

8.7.2 Open edX Learning Management System as an XBlock Runtime

The Open edX Learning Management System (LMS) is the application in the Open edX Platform that learners use to
view and interact with courseware.

Because it presents XBlocks to learners and records their interactions, the LMS is also an XBlock runtime application.

As an XBlock developer, you must understand what XBlock properties the LMS requires.

• LMS Requirements for XBlocks

• Internationalization Support

8.7. XBlocks and the edX Platform 89

XBlock API Guide

LMS Requirements for XBlocks

The LMS requires XBlocks to have the following properties.

• A view method named student_view. This is the view that renders the XBlock in the LMS for learners to see
and interact with.

In addition, the student_view method is used to render the XBlock in the Studio preview mode, unless the
XBlock also has an author_view method. For more information, see Open edX Studio as an XBlock Runtime.

• A class property named has_score with a value of True if the XBlock is to be graded.

• A class property named icon_class, which controls the icon that displays to learners in the unit navigation bar
on the Course page when the XBlock is in that unit. The variable must have one of the following values.

Value Icon

problem

video

other

Internationalization Support

The LMS is currently capable of supporting internationalization (i18n) and localization (l10n) of static UI text included
in your XBlock – also known as “chrome” or “labels”. Translation of user-generated content stored as XBlock state is
not currently supported.

To present XBlock language translations in the LMS you must include the translated strings for your chosen “locale”
in the GNU Gettext Portable Object file format. Translated strings must be stored in a “domain” file named “text.po”.

• locale: A set of parameters that defines the user’s language, region and any special variant preferences that the
user wants to see in their user interface

• domain: A Gettext application representing the set of translated strings corresponding to a particular locale.

Each “text.po” domain file consists of one or more string/translation pairs for the language/locale. Further, each trans-
lation pair consists of two fields: “msgid” for the base string, and “msgstr” for its corresponding translation.

There is no limit on the number of locales/domains that can be included with your XBlock. However, your specific
Open edX installation may not be configured to support every locale that you provide.

You can learn more about the GNU Gettext Portable Object file format and download the GNU Gettext software using
the following resources:

• https://www.gnu.org/software/gettext/

• https://en.wikipedia.org/wiki/Gettext

• https://www.drupal.org/node/1814954

In addition to GNU Gettext, it is also possible to utilize the Open edX “i18n-tools” GNU Gettext wrapper to work with
your XBlock locales and domains. You will need to modify the i18n-tools YAML configuration file to work with your
XBlock project. More information about the i18n-tools project and its configuration file can be found at:

• https://github.com/openedx/i18n-tools

90 Chapter 8. Open edX XBlock Tutorial

https://www.gnu.org/software/gettext/
https://en.wikipedia.org/wiki/Gettext
https://www.drupal.org/node/1814954
https://github.com/openedx/i18n-tools

XBlock API Guide

• https://github.com/openedx/i18n-tools/blob/master/conf/locale/config.yaml

Adding Translated Strings to your XBlock

1. Create a directory within your XBlock code project named “translations”. This directory should be located at
the same level in your code project as your XBlock implementation file. For example:

• http://github.com/my_org/my_xblock/my_xblock/my_xblock.py

• http://github.com/my_org/my_xblock/my_xblock/translations/

2. Create a set of language directories for each of your locales within this new “translations” directory. You may
specify either a general language code or a specific language locale code for the name of each directory. Include
an “LC_MESSAGES” directory with each language directory.

• ../my_xblock/translations/ar/LC_MESSAGES/

• ../my_xblock/translations/es-es/LC_MESSAGES/

3. Create a domain file named “text.po”. You can use the Gettext xgettext command directly, or another tool of
your choosing, such as Django’s makemessages utility, or i18n-tools. For more information on how to use these
tools, see the following resources.

• Gettext: https://www.gnu.org/software/gettext/manual/gettext.html

• Gettext: http://phptal.org/manual/en/split/gettext.html

• Django: https://docs.djangoproject.com/en/dev/topics/i18n/translation/
#localization-how-to-create-language-files

• i18n-tools: https://github.com/openedx/i18n-tools

4. Repeat the domain file creation process for each language/locale you support.

In the following example, we will use the i18n-tools utilites to generate a “text.po” file.

1. Create an alternative configuration file containing the details for your particular XBlock project

2. Run i18n_tool extract to automatically find strings and populate the PO file.

3. Run i18n_tool generate to compile your human-readable PO file to a machine-readable “MO” binary
file

4. Repeat the extraction/generation process for as many languages/locales as you require for your XBlock

5. Add all of your translation directories and PO/MO files to your XBlock code project for distribution

5. Open each “text.po” domain file and, for each “msgid” string, add a corresponding “msgstr” translation. PO files
can be edited by hand, with a tool such as Pedit or Emacs, or through a third party service such as Transifex.

6. Place each locale’s “text.po” domain file within the corresponding “LC_MESSAGES” directory.

• ../my_xblock/translations/ar/LC_MESSAGES/text.po

• ../my_xblock/translations/es-es/LC_MESSAGES/text.po

7. Compile your “text.po” files into binary “text.mo” files using the Gettext msgfmt command (or via the tool of
your choice), and include these “text.mo” files alongside your “text.po” files in your code project.

• ../my_xblock/translations/ar/LC_MESSAGES/text.mo

• ../my_xblock/translations/ar/LC_MESSAGES/text.po

The resulting directory/file structure should look like this.

8.7. XBlocks and the edX Platform 91

https://github.com/openedx/i18n-tools/blob/master/conf/locale/config.yaml
https://www.gnu.org/software/gettext/manual/gettext.html
http://phptal.org/manual/en/split/gettext.html
https://docs.djangoproject.com/en/dev/topics/i18n/translation/#localization-how-to-create-language-files
https://docs.djangoproject.com/en/dev/topics/i18n/translation/#localization-how-to-create-language-files
https://github.com/openedx/i18n-tools

XBlock API Guide

/my_xblock
my_xblock.py
translations

ar
| LC_MESSAGES
| text.mo
| text.po

es-es
| LC_MESSAGES
| text.mo
| text.po

ru
| LC_MESSAGES
| text.mo
| text.po

zh-cn
LC_MESSAGES

text.mo
text.po

You can now run the LMS and update your preferred language via Account Settings in order to observe the translated
strings for your chosen locale.

Note: In the absence of an available language locale and domain file, the LMS XBlock runtime will attempt to match
strings marked for translation within your XBlock using its own set of language locales and domains. However, it is
not recommended that you rely on the LMS mechanism for internationalization support. There is no guarantee your
strings will be matched by the LMS, and even if matches are found, the translations may be incorrect in the context of
your specific XBlock.

8.7.3 Deploy Your XBlock in Devstack

This section provides instructions for deploying your XBlock in devstack.

• Prerequisites

• Installing the XBlock

• Enable the XBlock in Your Course

• Add an Instance of the XBlock to a Unit

For more information about devstack, see the Installing, Configuring, and Running the Open edX Platform.

92 Chapter 8. Open edX XBlock Tutorial

https://edx.readthedocs.io/projects/edx-installing-configuring-and-running/en/latest/index.html

XBlock API Guide

Prerequisites

Before proceeding with the steps to deploy your XBlock, ensure the following requirements are met.

• Devstack is running. For instructions, see the devstack repository.

• Ensure you have the XBlock directory in a location you can access from the devstack containers (e.g. edx-
platform/src/`).

Installing the XBlock

The following instructions will help you install a XBlock on your OpenEdX devstack. Since LMS and Studio run on
separate Docker containers, you will need to install the XBlock to the virtual environments of both containers.

Note: These steps consider you’re running the Docker based Devstack provisioned at ~/devstack_workspace/.

1. From your devstack folder (~/devstack_workspace/devstack), enter the LMS container shell:

$ make lms-shell

2. Install the XBlock on edx-platform virtual enviroment:

root@7beb9df53150:/edx/app/edxapp/edx-platform# pip install path/to/xblock

3. Use C-d to exit the LMS shell and enter Studio shell with:

$ make studio-shell

4. Install the XBlock in the same way you’ve installed it on LMS:

root@7beb9df53150:/edx/app/edxapp/edx-platform# pip install path/to/xblock

5. To make sure the XBlock is available, you will need to restart both LMS and Studio:

$ make lms-restart && make studio-restart

After this, you’ll be able to enable and add the XBlock to your course.

Enable the XBlock in Your Course

To use a XBlock, you must enable it in each course in which you intend to use it.

1. Log in to Studio.

2. Open the course.

3. From the Settings menu, select Advanced Settings.

4. In the Advanced Module List field, place your cursor between the braces, and then type the exact name of the
XBlock.

Note: The name you enter must match exactly the name specified in your XBlock’s setup.py file.

If you see other values in the Advanced Module List field, add a comma after the closing quotation mark for
the last value, and then type the name of your XBlock.

8.7. XBlocks and the edX Platform 93

https://github.com/openedx/devstack

XBlock API Guide

5. At the bottom of the page, select Save Changes.

Add an Instance of the XBlock to a Unit

You can add instances of the XBlock in any unit in the course.

On the unit page, under Add New Component, select Advanced.

Your XBlock is listed as one of the types you can add.

Select the name of your XBlock to add an instance to the unit.

You can then edit the properties of the instance as needed by selecting the Edit button.

For more information about working with components in Studio, see Developing Course Components in the Building
and Running an Open edX guide.

8.7.4 Submit Your XBlock to edX

Many developers and institutions submit the XBlocks they develop to edX, to benefit course teams and learners who
create and take classes on edx.org.

Note that you are not required to submit your XBlock to edX. You and other edX service providers can run your XBlock
without involving edX.

To submit your XBlock to edx.org, complete the following steps.

1. Upload the XBlock to a repository on GitHub.

2. Create a new branch in the edx-platform GitHub repository.

3. In your branch, add a line to the requirements/edx/github.txt file that indicates the version of your XBlock to use.

Note: The requirements file addition is the only change you should make in your branch. Do not include the
code for your XBlock in the pull request.

4. Create a pull request for your branch in the edx-platform GitHub repository.

5. Add a thorough description of your XBlock and its intended use to the pull request. You must include instructions
to manually test that the XBlock is working properly.

6. Add a link to your XBlock repository in the pull request.

After you submit the pull request, edX will review your XBlock to ensure that it is appropriate for use on edx.org.
Specifically, edX will review your XBlock for security, scalability, accessibility, and fitness of purpose. You should be
prepared to respond to questions and comments from edX in your pull request.

8.8 Open edX Glossary

Glossary

94 Chapter 8. Open edX XBlock Tutorial

https://edx.readthedocs.io/projects/edx-partner-course-staff/en/latest/developing_course/course_components.html
http://edx.org
https://github.com/openedx/edx-platform
https://github.com/openedx/edx-platform/blob/master/requirements/edx/github.txt
https://docs.openedx.org/en/latest/developers/references/glossary.html

XBlock API Guide

8.9 Appendices

8.9.1 Using XBlock Software Development Kit

The XBlock SDK is a Python application you use to help you build new XBlocks. The XBlock SDK contains three
main components:

• An XBlock creation tool that builds the skeleton of a new XBlock.

• An XBlock runtime for viewing and testing your XBlocks during development.

• Sample XBlocks that you can use as the starting point for new XBlocks, and for your own learning.

In Build an XBlock: Quick Start, you set up the XBlock Software Development Kit (SDK). You had to do this to create
your first XBlock.

While covering some of the same topics, this part of the tutorial is included as a later reference for using the XBlock
SDK.

Getting Started with the XBlock SDK

This section describes how to get started with the XBlock SDK.

• Clone the XBlock Software Development Kit

• Create an XBlock

• Install the XBlock

• Create the SQLite Database

• Run the XBlock SDK Server

Clone the XBlock Software Development Kit

The XBlock SDK is a Python application you use to help you build new XBlocks. The XBlock SDK contains three
main components:

• An XBlock creation tool that builds the skeleton of a new XBlock.

• An XBlock runtime for viewing and testing your XBlocks during development.

• Sample XBlocks that you can use as the starting point for new XBlocks, and for your own learning.

After you create and activate the virtual environment, you clone the XBlock SDK and install its requirements. To do
this, complete the following steps at a command prompt.

1. In the xblock_development directory, run the following command to clone the XBlock SDK repository from
GitHub.

(xblock-env) $ git clone https://github.com/openedx/xblock-sdk.git

2. In the same directory, create an empty directory called var.

(xblock-env) $ mkdir var

3. Run the following command to change to the xblock-sdk directory.

8.9. Appendices 95

https://github.com/openedx/xblock-sdk

XBlock API Guide

(xblock-env) $ cd xblock-sdk

4. Run the following commands to install the XBlock SDK requirements.

(xblock-env) $ make install

5. Run the following command to return to the xblock_development directory, where you will perform the rest
of your work.

(xblock-env) $ cd ..

Create an XBlock

You use the XBlock SDK to create skeleton files for an XBlock. To do this, follow these steps at a command prompt.

1. Change to the xblock_development directory, which contains the var, xblock-env, and xblock-sdk sub-
directories.

2. Run the following command to create the skeleton files for the XBlock.

(xblock-env) $ xblock-sdk/bin/workbench-make-xblock

Instructions in the command window instruct you to determine a short name and a class name. Follow the
guidelines in the command window to determine the names that you want to use.

You will be prompted for two pieces of information:

* Short name: a single word, all lower-case, for directory and file
names. For a hologram 3-D XBlock, you might choose "holo3d".

* Class name: a valid Python class name. It's best if this ends with
"XBlock", so for our hologram XBlock, you might choose
"Hologram3dXBlock".

Once you specify those two names, a directory is created in the
``xblock_development`` directory containing the new project.

If you don't want to create the project here, or you enter a name
incorrectly, type Ctrl-C to stop the creation script. If you don't want
the resulting project, delete the directory it created.

3. At the command prompt, enter the Short Name you selected for your XBlock.

$ Short name: myxblock

4. At the command prompt, enter the Class name you selected for your XBlock.

$ Class name: MyXBlock

The skeleton files for the XBlock are created in the myxblock directory. For more information about the XBlock files,
see Anatomy of an XBlock.

96 Chapter 8. Open edX XBlock Tutorial

XBlock API Guide

Install the XBlock

After you create the XBlock, you install it in the XBlock SDK.

In the xblock_development directory, use pip to install your XBlock.

(xblock-env) $ pip install -e myxblock

You can then test your XBlock in the XBlock SDK.

Create the SQLite Database

Before running the XBlock SDK the first time, you must create the SQLite database.

1. In the xblock_development directory, run the following command to create the database and the tables.

(xblock-env) $ python xblock-sdk/manage.py migrate

Run the XBlock SDK Server

To see the web interface of the XBlock SDK, you must run the SDK server.

In the xblock_development directory, run the following command to start the server.

(xblock-env) $ python xblock-sdk/manage.py runserver

Note: If you do not specify a port, the XBlock SDK server uses port 8000. To use a different port, specify it in the
runserver command.

Then test that the XBlock SDK is running. In a browser, go to http://localhost:8000. You should see the following
page.

8.9. Appendices 97

XBlock API Guide

The page shows the XBlocks installed automatically with the XBlock SDK. Note that the page also shows the
MyXBlock XBlock that you created in Create Your First XBlock.

Get Help for the XBlock SDK Server

To get help for the XBlock SDK runserver command, run the following command.

(xblock-env) $ python xblock-sdk/manage.py help

The command window lists and describes the available commands.

98 Chapter 8. Open edX XBlock Tutorial

CHAPTER

NINE

XBLOCK.UTILS

9.1 Package having various utilities for XBlocks

9.1.1 Purpose

xblock/utils package contains a collection of utility functions and base test classes that are useful for any XBlock.

9.1.2 Documentation

StudioEditableXBlockMixin

from xblock.utils.studio_editable import StudioEditableXBlockMixin

This mixin will automatically generate a working studio_view form that allows content authors to edit the fields of
your XBlock. To use, simply add the class to your base class list, and add a new class field called editable_fields,
set to a tuple of the names of the fields you want your user to be able to edit.

@XBlock.needs("i18n")
class ExampleBlock(StudioEditableXBlockMixin, XBlock):

...
mode = String(

display_name="Mode",
help="Determines the behaviour of this component. Standard is recommended.",
default='standard',
scope=Scope.content,
values=('standard', 'crazy')

)
editable_fields = ('mode', 'display_name')

That’s all you need to do. The mixin will read the optional display_name, help, default, and values settings from
the fields you mention and build the editor form as well as an AJAX save handler.

If you want to validate the data, you can override validate_field_data(self, validation, data) and/or
clean_studio_edits(self, data) - see the source code for details.

Supported field types:

• Boolean: field_name = Boolean(display_name="Field Name")

• Float: field_name = Float(display_name="Field Name")

• Integer: field_name = Integer(display_name="Field Name")

99

XBlock API Guide

• String: field_name = String(display_name="Field Name")

• String (multiline): field_name = String(multiline_editor=True, resettable_editor=False)

• String (html): field_name = String(multiline_editor='html', resettable_editor=False)

Any of the above will use a dropdown menu if they have a pre-defined list of possible values.

• List of unordered unique values (i.e. sets) drawn from a small set of possible values: field_name =
List(list_style='set', list_values_provider=some_method)

– The List declaration must include the property list_style='set' to indicate that the List field is being
used with set semantics.

– The List declaration must also define a list_values_provider method which will be called with the
block as its only parameter and which must return a list of possible values.

• Rudimentary support for Dict, ordered List, and any other JSONField-derived field types

– list_field = List(display_name="Ordered List", default=[])

– dict_field = Dict(display_name="Normal Dict", default={})

Supported field options (all field types):

• values can define a list of possible options, changing the UI element to a select box. Values can be set to any
of the formats defined in the XBlock source code:

– A finite set of elements: [1, 2, 3]

– A finite set of elements where the display names differ from the values:

[
{"display_name": "Always", "value": "always"},
{"display_name": "Past Due", "value": "past_due"},

]

– A range for floating point numbers with specific increments: {"min": 0 , "max": 10, "step":
.1}

– A callable that returns one of the above. (Note: the callable does not get passed the XBlock instance or
runtime, so it cannot be a normal member function)

• values_provider can define a callable that accepts the XBlock instance as an argument, and returns a list of
possible values in one of the formats listed above.

• resettable_editor - defaults to True. Set False to hide the “Reset” button used to return a field to its default
value by removing the field’s value from the XBlock instance.

100 Chapter 9. Xblock.utils

https://github.com/openedx/XBlock/blob/master/xblock/fields.py

XBlock API Guide

Basic screenshot:

StudioContainerXBlockMixin

from xblock.utils.studio_editable import StudioContainerXBlockMixin

This mixin helps to create XBlocks that allow content authors to add, remove, or reorder child blocks. By removing any
existing author_view and adding this mixin, you’ll get editable, re-orderable, and deletable child support in Studio.
To enable authors to add arbitrary blocks as children, simply override author_edit_view and set can_add=True
when calling render_children - see the source code. To restrict authors so they can add only specific types of child
blocks or a limited number of children requires custom HTML.

9.1. Package having various utilities for XBlocks 101

XBlock API Guide

An example is the mentoring XBlock:

child_isinstance

from xblock.utils.helpers import child_isinstance

If your XBlock needs to find children/descendants of a particular class/mixin, you should use

child_isinstance(self, child_usage_id, SomeXBlockClassOrMixin)

rather than calling

isinstance(self.runtime.get_block(child_usage_id), SomeXBlockClassOrMixin)

On runtimes such as those in edx-platform, child_isinstance is orders of magnitude faster.

102 Chapter 9. Xblock.utils

XBlock API Guide

XBlockWithSettingsMixin

This mixin provides access to instance-wide XBlock-specific configuration settings. See Accessing XBlock specific
settings for details.

ThemableXBlockMixin

This mixin provides XBlock theming capabilities built on top of XBlock-specific settings. See Theming support for
details.

To learn more, refer to the page.

Settings and theme support

Accessing XBlock specific settings

XBlock utils provide a mixin to simplify accessing instance-wide XBlock-specific configuration settings:
XBlockWithSettingsMixin. This mixin aims to provide a common interface for pulling XBlock settings from the
LMS SettingsService.

SettingsService allows individual XBlocks to access environment and django settings in an isolated manner:

• XBlock settings are represented as dictionary stored in django settings and populated from environment *.json
files (cms.env.json and lms.env.json)

• Each XBlock is associated with a particular key in that dictionary: by default an XBlock’s class name is used,
but XBlocks can override it using the block_settings_key attribute/property.

Please note that at the time of writing the implementation of SettingsService assumed “good citizenship” behav-
ior on the part of XBlocks, i.e. it does not check for key collisions and allows modifying mutable settings. Both
SettingsService and XBlockWithSettingsMixin are not concerned with contents of settings bucket and return
them as is. Refer to the SettingsService docstring and implementation for more details.

Using XBlockWithSettingsMixin

In order to use SettingsService and XBlockWithSettingsMixin, a client XBlock must require it via standard
XBlock.wants('settings') or XBlock.needs('settings') decorators. The mixins themselves are not deco-
rated as this would not result in all descendant XBlocks to also be decorated.

With XBlockWithSettingsMixin and wants decorator applied, obtaining XBlock settings is as simple as

self.get_xblock_settings() # returns settings bucket or None
self.get_xblock_settings(default=something) # returns settings bucket or "something"

In case of missing or inaccessible XBlock settings (i.e. no settings service in runtime, no XBLOCK_SETTINGS in settings,
or XBlock settings key is not found) default value is used.

9.1. Package having various utilities for XBlocks 103

https://github.com/edx/edx-platform/blob/master/common/lib/xmodule/xmodule/services.py
https://github.com/edx/edx-platform/blob/master/cms/envs/aws.py#L341-342

XBlock API Guide

Theming support

XBlock theming support is built on top of XBlock-specific settings. XBlock utils provide ThemableXBlockMixin to
streamline using XBlock themes.

XBlock theme support is designed with two major design goals:

• Allow for a different look and feel of an XBlock in different environments.

• Use a pluggable approach to hosting themes, so that adding a new theme will not require forking an XBlock.

The first goal made using SettingsService and XBlockWithSettingsMixin an obvious choice to store and obtain
theme configuration. The second goal dictated the configuration format - it is a dictionary (or dictionary-like object)
with the following keys:

• package - “top-level” selector specifying package which hosts theme files

• locations - a list of locations within that package

Examples:

will search for files red.css and small.css in my_xblock package
{

'package': 'my_xblock',
'locations': ['red.css', 'small.css']

}

will search for files public/themes/red.css in my_other_xblock.assets package
default_theme_config = {

'package': 'my_other_xblock.assets',
'locations': ['public/themes/red.css']

}

Theme files must be included into package (see python docs for details). At the time of writing it is not possible to
fetch theme files from multiple packages.

Note: XBlock themes are not LMS themes - they are just additional CSS files included into an XBlock fragment
when the corresponding XBlock is rendered. However, it is possible to misuse this feature to change look and feel
of the entire LMS, as contents of CSS files are not checked and might contain selectors that apply to elements out-
side of the XBlock in question. Hence, it is advised to scope all CSS rules belonging to a theme with a global CSS
selector .themed-xblock.<root xblock element class>, e.g. .themed-xblock.poll-block. Note that the
themed-xblock class is not automatically added by ThemableXBlockMixin, so one needs to add it manually.

Using ThemableXBlockMixin

In order to use ThemableXBlockMixin, a descendant XBlock must also be a descendant of
XBlockWithSettingsMixin (XBlock.wants decorator requirement applies) or provide a similar interface for
obtaining the XBlock settings bucket.

There are three configuration parameters that govern ThemableXBlockMixin behavior:

• default_theme_config - default theme configuration in case no theme configuration can be obtained

• theme_key - a key in XBlock settings bucket that stores theme configuration

• block_settings_key - inherited from XBlockWithSettingsMixin if used in conjunction with it

It is safe to omit default_theme_config or set it to None in case no default theme is available. In this case,
ThemableXBlockMixin will skip including theme files if no theme is specified via settings.

104 Chapter 9. Xblock.utils

https://docs.python.org/2/distutils/setupscript.html#installing-package-data

XBlock API Guide

ThemableXBlockMixin exposes two methods:

• get_theme() - this is used to get theme configuration. Default implementation uses get_xblock_settings
and theme_key, descendants are free to override it. Normally, it should not be called directly.

• include_theme_files(fragment) - this method is an entry point to ThemableXBlockMixin functionality. It
calls get_theme to obtain theme configuration, fetches theme files and includes them into fragment. fragment
must be a web_fragments.fragment instance.

So, having met usage requirements and set up theme configuration parameters, including theme into XBlock fragment
is a one liner:

self.include_theme_files(fragment)

9.1. Package having various utilities for XBlocks 105

https://github.com/openedx/web-fragments/blob/master/web_fragments/fragment.py

XBlock API Guide

106 Chapter 9. Xblock.utils

PYTHON MODULE INDEX

x
xblock.exceptions, 41
xblock.fields, 21
xblock.runtime, 29

107

XBlock API Guide

108 Python Module Index

INDEX

A
add_block_as_child_node()

(xblock.runtime.Runtime method), 33
add_children_to_node() (xblock.core.XBlock

method), 13
add_node_as_child() (xblock.runtime.Runtime

method), 34
add_xml_to_node() (xblock.core.XBlock method), 13
add_xml_to_node() (xblock.core.XBlockAside

method), 17
applicable_aside_types() (xblock.runtime.Runtime

method), 34
ASIDE_DEFINITION_ID

(xblock.runtime.MemoryIdManager attribute),
32

aside_for() (xblock.core.XBlockAside class method),
17

ASIDE_USAGE_ID (xblock.runtime.MemoryIdManager
attribute), 32

aside_view_declaration()
(xblock.core.XBlockAside method), 17

B
BlockScope (class in xblock.fields), 21
Boolean (class in xblock.fields), 21

C
clear() (xblock.runtime.MemoryIdManager method),

32
clear_child_cache() (xblock.core.XBlock method),

13
construct_xblock() (xblock.runtime.Runtime

method), 34
construct_xblock_from_class()

(xblock.runtime.Runtime method), 34
context_key (xblock.core.XBlock property), 13
context_key (xblock.core.XBlockAside property), 18
create_aside() (xblock.runtime.IdGenerator method),

29
create_aside() (xblock.runtime.MemoryIdManager

method), 32
create_aside() (xblock.runtime.Runtime method), 34

create_definition() (xblock.runtime.IdGenerator
method), 29

create_definition()
(xblock.runtime.MemoryIdManager method),
32

create_usage() (xblock.runtime.IdGenerator method),
29

create_usage() (xblock.runtime.MemoryIdManager
method), 32

D
DbModel (in module xblock.runtime), 29
default (xblock.fields.Field property), 23
default() (xblock.field_data.FieldData method), 27
default() (xblock.runtime.KeyValueStore method), 31
default() (xblock.runtime.KvsFieldData method), 31
delete() (xblock.field_data.FieldData method), 27
delete() (xblock.runtime.DictKeyValueStore method),

29
delete() (xblock.runtime.KeyValueStore method), 31
delete() (xblock.runtime.KvsFieldData method), 31
delete_from() (xblock.fields.Field method), 23
Dict (class in xblock.fields), 22
DictKeyValueStore (class in xblock.runtime), 29
DisallowedFileError, 41
display_name (xblock.fields.Field property), 23

E
enforce_type() (xblock.fields.Boolean method), 21
enforce_type() (xblock.fields.Dict method), 22
enforce_type() (xblock.fields.Field method), 23
enforce_type() (xblock.fields.Float method), 24
enforce_type() (xblock.fields.Integer method), 25
enforce_type() (xblock.fields.List method), 25
enforce_type() (xblock.fields.Set method), 26
enforce_type() (xblock.fields.String method), 26
enforce_type() (xblock.fields.XMLString method), 27
export_to_xml() (xblock.runtime.Runtime method), 34

F
Field (class in xblock.fields), 22
field_data (xblock.runtime.Runtime property), 34

109

XBlock API Guide

FieldData (class in xblock.field_data), 27
FieldDataDeprecationWarning, 41
Filesystem (class in xblock.reference.plugins), 39
Float (class in xblock.fields), 24
force_save_fields() (xblock.core.XBlock method),

14
force_save_fields() (xblock.core.XBlockAside

method), 18
from_json() (xblock.fields.Boolean method), 22
from_json() (xblock.fields.Dict method), 22
from_json() (xblock.fields.Field method), 23
from_json() (xblock.fields.Float method), 24
from_json() (xblock.fields.Integer method), 25
from_json() (xblock.fields.List method), 25
from_json() (xblock.fields.Set method), 26
from_json() (xblock.fields.String method), 26
from_string() (xblock.fields.Field method), 23
from_string() (xblock.fields.String method), 26

G
get() (xblock.field_data.FieldData method), 28
get() (xblock.runtime.DictKeyValueStore method), 29
get() (xblock.runtime.KeyValueStore method), 31
get() (xblock.runtime.KvsFieldData method), 31
get_aside() (xblock.runtime.Runtime method), 34
get_aside_of_type() (xblock.runtime.Runtime

method), 34
get_aside_type_from_definition()

(xblock.runtime.IdReader method), 30
get_aside_type_from_definition()

(xblock.runtime.MemoryIdManager method),
32

get_aside_type_from_usage()
(xblock.runtime.IdReader method), 30

get_aside_type_from_usage()
(xblock.runtime.MemoryIdManager method),
32

get_asides() (xblock.runtime.Runtime method), 34
get_block() (xblock.runtime.Runtime method), 34
get_block_type() (xblock.runtime.IdReader method),

30
get_block_type() (xblock.runtime.MemoryIdManager

method), 32
get_child() (xblock.core.XBlock method), 14
get_children() (xblock.core.XBlock method), 14
get_definition_id() (xblock.runtime.IdReader

method), 30
get_definition_id()

(xblock.runtime.MemoryIdManager method),
32

get_definition_id_from_aside()
(xblock.runtime.IdReader method), 30

get_definition_id_from_aside()
(xblock.runtime.MemoryIdManager method),

32
get_i18n_js_namespace() (xblock.core.XBlock class

method), 14
get_i18n_js_namespace() (xblock.core.XBlockAside

class method), 18
get_javascript_i18n_catalog_url()

(xblock.runtime.NullI18nService method),
32

get_parent() (xblock.core.XBlock method), 14
get_public_dir() (xblock.core.XBlock class method),

14
get_public_dir() (xblock.core.XBlockAside class

method), 18
get_resources_dir() (xblock.core.XBlock class

method), 14
get_resources_dir() (xblock.core.XBlockAside class

method), 18
get_response() (xblock.exceptions.JsonHandlerError

method), 41
get_usage_id_from_aside()

(xblock.runtime.IdReader method), 30
get_usage_id_from_aside()

(xblock.runtime.MemoryIdManager method),
32

H
handle() (xblock.core.XBlock method), 14
handle() (xblock.core.XBlockAside method), 18
handle() (xblock.runtime.Runtime method), 34
handler() (xblock.core.XBlock class method), 14
handler() (xblock.core.XBlockAside class method), 18
handler_url() (xblock.runtime.Runtime method), 35
has() (xblock.field_data.FieldData method), 28
has() (xblock.runtime.DictKeyValueStore method), 29
has() (xblock.runtime.KeyValueStore method), 31
has() (xblock.runtime.KvsFieldData method), 31
has_cached_parent (xblock.core.XBlock property), 14
has_support() (xblock.core.XBlock method), 14

I
IdGenerator (class in xblock.runtime), 29
IdReader (class in xblock.runtime), 30
index_dictionary() (xblock.core.XBlock method), 14
index_dictionary() (xblock.core.XBlockAside

method), 18
Integer (class in xblock.fields), 24
InvalidScopeError, 41
is_set_on() (xblock.fields.Field method), 23

J
json_handler() (xblock.core.XBlock class method), 14
json_handler() (xblock.core.XBlockAside class

method), 18
JsonHandlerError, 41

110 Index

XBlock API Guide

K
KeyValueMultiSaveError, 41
KeyValueStore (class in xblock.runtime), 30
KeyValueStore.Key (class in xblock.runtime), 31
KvsFieldData (class in xblock.runtime), 31

L
layout_asides() (xblock.runtime.Runtime method), 35
lex() (xblock.runtime.RegexLexer method), 33
List (class in xblock.fields), 25
load_aside_type() (xblock.runtime.Runtime method),

35
load_block_type() (xblock.runtime.Runtime method),

35
load_class() (xblock.core.XBlock class method), 15
load_class() (xblock.core.XBlockAside class method),

19
load_class() (xblock.plugin.Plugin class method), 39
load_classes() (xblock.core.XBlock class method), 15
load_classes() (xblock.core.XBlockAside class

method), 19
load_classes() (xblock.plugin.Plugin class method),

39
load_tagged_classes() (xblock.core.XBlock class

method), 15
local_resource_url() (xblock.runtime.Runtime

method), 35

M
MemoryIdManager (class in xblock.runtime), 32
mix() (xblock.runtime.Mixologist method), 32
Mixologist (class in xblock.runtime), 32
module

xblock.exceptions, 41
xblock.fields, 21
xblock.runtime, 29

N
name (xblock.fields.Field property), 23
named_scopes() (xblock.fields.Scope class method), 26
needs() (xblock.core.XBlock class method), 15
needs() (xblock.core.XBlockAside class method), 19
needs_name() (xblock.fields.Field static method), 23
needs_serialization() (xblock.core.XBlockAside

method), 19
none_to_xml (xblock.fields.String property), 26
NoSuchDefinition, 41
NoSuchHandlerError, 41
NoSuchServiceError, 41
NoSuchUsage, 41
NoSuchViewError, 41
NullI18nService (class in xblock.runtime), 32

O
ObjectAggregator (class in xblock.runtime), 33
open_local_resource() (xblock.core.XBlock class

method), 15
open_local_resource() (xblock.core.XBlockAside

class method), 19

P
parse_xml() (xblock.core.XBlock class method), 16
parse_xml() (xblock.core.XBlockAside class method),

19
parse_xml_file() (xblock.runtime.Runtime method),

35
parse_xml_string() (xblock.runtime.Runtime

method), 36
Plugin (class in xblock.plugin), 39
publish() (xblock.runtime.Runtime method), 36

Q
query() (xblock.runtime.Runtime method), 36
querypath() (xblock.runtime.Runtime method), 36

R
read_from() (xblock.fields.Field method), 23
read_json() (xblock.fields.Field method), 23
RegexLexer (class in xblock.runtime), 33
register_temp_plugin() (xblock.core.XBlock class

method), 16
register_temp_plugin() (xblock.core.XBlockAside

class method), 20
register_temp_plugin() (xblock.plugin.Plugin class

method), 39
render() (xblock.core.XBlock method), 16
render() (xblock.runtime.Runtime method), 36
render_asides() (xblock.runtime.Runtime method), 36
render_child() (xblock.runtime.Runtime method), 36
render_children() (xblock.runtime.Runtime method),

36
resource_url() (xblock.runtime.Runtime method), 36
Runtime (class in xblock.runtime), 33

S
save() (xblock.core.XBlock method), 16
save() (xblock.core.XBlockAside method), 20
save_block() (xblock.runtime.Runtime method), 37
Scope (class in xblock.fields), 25
ScopeIds (class in xblock.fields), 26
scopes() (xblock.fields.BlockScope class method), 21
scopes() (xblock.fields.Scope class method), 26
scopes() (xblock.fields.UserScope class method), 27
service() (xblock.runtime.Runtime method), 37
service_declaration() (xblock.core.XBlock class

method), 16

Index 111

XBlock API Guide

service_declaration() (xblock.core.XBlockAside
class method), 20

Set (class in xblock.fields), 26
set() (xblock.field_data.FieldData method), 28
set() (xblock.runtime.DictKeyValueStore method), 29
set() (xblock.runtime.KeyValueStore method), 31
set() (xblock.runtime.KvsFieldData method), 31
set_many() (xblock.field_data.FieldData method), 28
set_many() (xblock.runtime.DictKeyValueStore

method), 29
set_many() (xblock.runtime.KeyValueStore method), 31
set_many() (xblock.runtime.KvsFieldData method), 31
should_apply_to_block() (xblock.core.XBlockAside

class method), 20
strftime() (xblock.runtime.NullI18nService method),

33
String (class in xblock.fields), 26
supports() (xblock.core.XBlock class method), 16

T
tag() (xblock.core.XBlock static method), 16
to_json() (xblock.fields.Field method), 23
to_json() (xblock.fields.XMLString method), 27
to_string() (xblock.fields.Dict method), 22
to_string() (xblock.fields.Field method), 23
to_string() (xblock.fields.String method), 27

U
ugettext (xblock.runtime.NullI18nService property), 33
ugettext() (xblock.core.XBlock method), 16
ungettext (xblock.runtime.NullI18nService property),

33
usage_key (xblock.core.XBlock property), 16
usage_key (xblock.core.XBlockAside property), 20
user_id (xblock.runtime.Runtime property), 37
UserIdDeprecationWarning, 41
UserScope (class in xblock.fields), 27

V
validate() (xblock.core.XBlock method), 17
values (xblock.fields.Field property), 24

W
wants() (xblock.core.XBlock class method), 17
wants() (xblock.core.XBlockAside class method), 20
wrap_aside() (xblock.runtime.Runtime method), 37
wrap_xblock() (xblock.runtime.Runtime method), 37
write_to() (xblock.fields.Field method), 24

X
XBlock (class in xblock.core), 13
xblock.exceptions

module, 41

xblock.fields
module, 21

xblock.runtime
module, 29

XBlockAside (class in xblock.core), 17
XBlockNotFoundError, 42
XBlockParseException, 42
XBlockSaveError, 42
xml_element_name() (xblock.core.XBlock method), 17
xml_element_name() (xblock.core.XBlockAside

method), 20
xml_text_content() (xblock.core.XBlock method), 17
xml_text_content() (xblock.core.XBlockAside

method), 20
XMLString (class in xblock.fields), 27

112 Index

	Change history for XBlock
	Unreleased
	4.0.1 - 2024-04-24
	4.0.0 - 2024-04-18
	3.0.0 - 2024-03-18
	2.0.0 - 2024-02-26
	1.10.0 - 2024-01-12
	1.9.1 - 2023-12-22
	1.9.0 - 2023-11-20
	1.8.1 - 2023-10-07
	1.8.0 - 2023-09-25
	1.7.0 - 2023-08-03
	1.6.1 - 2022-01-28
	1.6.0 - 2022-01-25
	1.5.1 - 2021-08-26
	1.5.0 - 2021-07-27
	1.4.2 - 2021-05-24
	1.4.1 - 2021-03-20
	1.3.1 - 2020-05-06
	1.3.0 - 2020-05-04
	1.2.8 - 2019-10-24
	1.2.7 - 2019-10-15
	1.2.6 - 2019-09-24
	1.2.5 - 2019-09-19
	1.2.4 - 2019-08-27
	1.2.3 - 2019-07-24
	1.2.1 - 2018-09-05
	1.2.1 - 2018-06-25
	1.2.0 - Aside filtering
	1.0 - Python 3
	0.5 - ???
	0.4
	0.3 - 2014-01-09

	Introduction to XBlocks
	Overview
	XBlock Independence and Interoperability
	XBlocks Compared to Web Applications

	XBlock API
	Fields API
	Runtime API
	Plugins API
	Exceptions API
	Open edX XBlock Tutorial
	Introduction
	Other Open edX Resources

	XBlock Overview
	Introduction to XBlocks
	Overview
	XBlock Independence and Interoperability
	XBlocks Compared to Web Applications
	XBlock API and Runtimes
	XBlocks and the Open edX Platform
	XBlocks for Developers
	Prerequisites
	XBlock Resources
	XBlock Independence and Interoperability

	XBlock Examples
	Google Drive & Calendar XBlock
	Adding the XBlock to Courseware
	Viewing the XBlock

	Examples in the XBlock SDK

	Build an XBlock: Quick Start
	Install XBlock Prerequisites
	Python 3.8
	Git
	A Virtual Environment

	Set Up the XBlock Software Development Kit
	Create a Directory for XBlock Work
	Create and Activate the Virtual Environment
	Clone the XBlock Software Development Kit

	Create Your First XBlock
	Create an XBlock
	Install the XBlock
	Create the SQLite Database
	Run the XBlock SDK Server
	Get Help for the XBlock SDK Server

	Next Steps

	What Browsers Do I Need to Support?

	Anatomy of an XBlock
	The XBlock Python File
	Thumb XBlock Fields
	Thumb XBlock Student View
	Thumb XBlock Vote Handler

	The XBlock HTML File
	The XBlock JavaScript File
	The XBlock Stylesheets

	Customize Your XBlock
	Customize myxblock.py
	The Default XBlock Python File
	Add Comments
	Add XBlock Fields
	Check Fields Against the Thumbs XBlock

	Define the Student View
	Define the Vote Handler
	Check the Handler Against the Thumbs XBlock

	Next Step

	Customize myxblock.html
	The Default XBlock HTML File
	Add HTML Content
	Check HTML Against the Thumbs XBlock
	Next Step

	Customize myxblock.js
	The Default XBlock JavaScript File
	Add JavaScript Code
	Check JavaScript Against the Thumbs XBlock
	Next Step

	Customize myxblock.css
	The Default XBlock CSS File
	Add CSS Code
	Check CSS Against the Thumbs XBlock
	Congrats!

	XBlock Concepts
	XBlock Fields
	XBlock Fields and State
	Field Names
	Field Parameters

	Field Scope
	User Scope
	XBlock Scope
	User and Block Scope Independence
	Predefined Scopes

	Fields and Data Storage
	Initializing Fields
	Fields and OLX
	Field Requirements in the edX Platform
	Default Fields in a New XBlock

	XBlock Methods
	View Methods
	Handler Methods
	Default Methods in a New XBlock

	XBlock Fragments
	Fragment Contents
	HTML Content
	JavaScript
	JavaScript Initializer

	CSS

	Fragments and XBlock Children
	Fragments and Views

	XBlock Children
	XBlock Tree Structure
	Accessing Children (Server-Side)
	Accessing Children (Client-Side)

	XBlock Runtimes
	Runtime Functions
	Extending XBlocks
	JavaScript Runtimes
	The XBlock SDK JavaScript Runtime
	The JavaScript Runtime Handler
	XBlock Children
	XBlock Child Map

	XBlock Runtime API
	Rendering XBlocks with the XBlock URL
	Finding the usage_id
	Example XBlock URLs

	XBlocks, Events, and Grading
	When an XBlock Should Emit Events
	Publish Events in Handler Methods
	Publish Grade Events
	has_score Variable

	XBlocks and the edX Platform
	Open edX Studio as an XBlock Runtime
	Studio Requirements for XBlocks

	Open edX Learning Management System as an XBlock Runtime
	LMS Requirements for XBlocks
	Internationalization Support
	Adding Translated Strings to your XBlock

	Deploy Your XBlock in Devstack
	Prerequisites
	Installing the XBlock
	Enable the XBlock in Your Course
	Add an Instance of the XBlock to a Unit

	Submit Your XBlock to edX

	Open edX Glossary
	Appendices
	Using XBlock Software Development Kit
	Getting Started with the XBlock SDK
	Clone the XBlock Software Development Kit
	Create an XBlock
	Install the XBlock
	Create the SQLite Database
	Run the XBlock SDK Server
	Get Help for the XBlock SDK Server

	Xblock.utils
	Package having various utilities for XBlocks
	Purpose
	Documentation
	StudioEditableXBlockMixin
	StudioContainerXBlockMixin
	child_isinstance
	XBlockWithSettingsMixin
	ThemableXBlockMixin
	Settings and theme support
	Accessing XBlock specific settings
	Using XBlockWithSettingsMixin
	Theming support
	Using ThemableXBlockMixin

	Python Module Index
	Index

